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ABSTRACT 

This paper presents our work on GetDressed, a 

contextually-aware clothing recommendation system. There 

is an unmet need for automated and personalized advice 

about the daily task of selecting an outfit. This task may 

seem small, but it has a real impact on people’s lives and 

many people are unsatisfied with the outfits they select and 

the time and effort they spend deciding on them. The 

system we developed uses contextual information together 

with a personal user profile and wardrobe model to advise 

the user what outfits are appropriate given the day’s events 

and weather conditions, the user’s preferences and history, 

and a style coordination metric. We performed a two-part 

user study to evaluate our system and the outfit 

recommendations it produces. Comparing three conditions 

for each of the two modes in GetDressed (Virtual Wardrobe 

Builder and Outfit Advisor), we found that our full system 

is better liked than versions with key missing components, 

as well as versions with static and randomly generated 

content, though the difference is smaller than we expected. 

In evaluating the outfit recommendations, we found that 

they are considered more stylish than randomly generated 

outfits, but again, by a smaller margin than expected. 

Nonetheless, we conclude from the user feedback that 

GetDressed can be useful to many people. 

 
INTRODUCTION 

Every morning, people everywhere check the weather, 

consider their schedule for the day, and think about what to 

wear. What to wear is perhaps a small decision, but it is one 

that is important to many people and has the potential to 

affect anyone’s day. From early data gathering, we 

determined that many people are in a position where they 

care about what they wear and how they present 

themselves, but feel that they lack the time and expertise to 

create outfits they consider fashionable. Many of the 

potential users we spoke with expressed that they would 

appreciate having easy access to personalized clothing 

advice as part of their daily routine, even if the advice is 

imperfect. 

 

Many clothing recommendation systems exist – especially 

for fashion advice and virtual shopping – but none fully 

addresses the basic needs of the morning outfit selection 

routine. Most existing systems either suggest clothes to buy 

or allow one to share or record outfits they have worn, but 

do not provide recommendations about one’s own clothes, 

much less take into account contextual information to make 

such a recommendation. On the other hand, contextual 

notification systems (e.g. for weather and calendar events) 

provide useful information, but do not leverage this 

information to produce tangible advice. Additionally, most 

systems don’t make recommendations from the user’s own 

wardrobe, making it difficult to make their advice 

actionable (especially as part of a daily routine). 

 

We’ve built a new system, called GetDressed, which 

integrates live contextual information with a personality 

profile of a user and a model of their wardrobe to generate 

outfit recommendations to meet their needs. The system 

utilizes web-sourced metadata to populate the user’s 

wardrobe model, thus alleviating them of tedious manual 

data entry to make the system work. GetDressed helps users 

express themselves through their clothing, simplifies an 

important part of their daily routines, and helps them find 

new styles tailored to their preferences. The goal is to help 

users feel more confident in making fashionable outfit 

decisions, as well as help them be more expressive and 

adventurous in what they wear. 

 

GetDressed consists of two main modes: a virtual shopping 

mode, and an outfit advisor mode. The first is used to 

quickly populate a virtual wardrobe with clothing similar to 

what the user actually owns. This eliminates the need for 

tedious hand labeling, though at a cost of reduced realism. 

The wardrobe that the user builds is populated from online 

sources, and from these sources metadata attributes about 

the clothing are also gathered. These attributes, along with 

history information make up the wardrobe model of the 

system, which is used by the outfit advisor mode to actually 

produce recommendations based on what the user likes, as 

well as the day’s conditions, as determined from two 

contextual sources: weather, and the user’s calendar events. 

Rudimentary stylistic metrics also impact the 

recommendations produced. 

 

We hypothesize that users will consider the complete 

GetDressed system to be useful to them, that the virtual 

shopping mode will be regarded as a easy and practical way 

to build a personalized virtual wardrobe, and that the outfit 

recommendations that the system generates are appealing to 

users. We evaluated the GetDressed system and the 

recommendations it produces in a two-part user study with 



in-person and online subjects. We conclude that GetDressed 

can be valuable and useful to many people, especially 

people who lack confidence in making their own stylish 

outfits. However, further personalization options and access 

to greater clothing variety may be needed before 

GetDressed can make a sizeable impact on people’s lives. 

 
PRIOR WORK 

Several existing systems and publications are related to 

GetDressed. A common these in these works is the 

understanding that many people have a desire for clothing 

recommendations, so similar needs and expectations are 

addressed by the various systems. In each work identified 

here, there are aspects that we found valuable and which 

influenced components of the system we developed. 

However, we also identify points of departure from how 

these systems address some of the needs of the users and 

use cases we envision. We’ve organized this related work 

into three categories: specialized clothing recommendation 

systems, context-aware recommendations, and clothes 

matching and similarity. Here we discuss them and their 

relationships to each other and to GetDressed. 

 

Specialized Clothing Recommendation Systems 

In specialized clothing recommendation systems, there exist 

several systems that provide recommendations for specific 

occasions or situations. Liu et al. [8] and Shen et al. [12] for 

example, developed systems that make clothing 

recommendations for specific occasions or scenarios, such 

as weddings or dating (Figures 1 and 2, respectively). In 

each case, user input was used to define the situation. These 

systems are conceptually similar to ours, especially with 

respect to GetDressed’s context-aware recommendations, 

but they differ in that they only consider context in a single 

dimension. GetDressed will incorporate contextual 

information from both weather and calendar events in 

making its recommendations, as well as a user profile and 

wardrobe model. 

 
Figure 1: The motivating problem of finding an 

appropriate outfit for a specific occasion, from “Magic 

Closet” by Liu et al. [8] 

 
Figure 2. A sample recommendation set from “Scenario-

Based Recommendation” by Shen et al. [12] 

 

Non-academic examples of clothing recommendation 

systems include SuitUp!
1
, a social fashion-sharing and 

recommendation system, and Civia’s What To Wear guide
2
, 

a static catalog of garment recommendations for cyclists. 

Civia’s What to Wear example (Figure 3) is interesting 

because, though static, it incorporates a feature that we 

hope to integrate into our own system: expert knowledge. In 

GetDressed, there is a need for a notion of fashionability 

and coordination quality to produce good recommendations 

and to evaluate outfit options. The knowledge for producing 

these metrics will come from evaluative qualities elucidated 

from fashion experts and formalized into a set of 

measurable properties and rules. 

 

 
Figure 3. Static outfit advice for different weather 

conditions from Civia Cycle’s What to Wear page
2
 

 

Context-Aware Recommendations 

Understanding contextual information and using it 

intelligently is a concept that extends to many areas. 

Campos et al. [1] for example, uses information about time 

and social company to make movie recommendations. 

Hong et al. [6] describe a context-aware personalization 

framework that is applicable to many activities including 

shopping and dining. Chen [3] meanwhile, describes a 

collaborative filtering system that uses contextual 

                                                
1
 http://www.kerrykao.com/suitup 

2
 http://www.civiacycles.com/whattowear 



information to predict user preferences. And in a patent 

filed by Chakravarty and Jain of IBM [2], a system is 

described for making recommendations for wearable attire 

and digital program recording based on calendar events. 

 

This last example is most similar in function to GetDressed, 

and it is in fact one of very few systems we found that 

actually makes attire recommendations based on a user’s 

own wardrobe (rather than an arbitrary collection, as in a 

virtual shopping example). Though this patented system 

requires embedding RFID tags in clothing to work, it 

highlights the need for a better and more portable solution. 

Embedding RFID tags (or similar markers) in clothing is far 

too big of a burden to place on users, and is precisely what 

we try to avoid by using online-sourced metadata to collect 

the information we need about a user’s wardrobe. 

 

Clothes Matching and Similarity 

A critically important consideration in ensuring that our 

system produces valuable outfit recommendations is the 

need for a computational model of garment matching and 

similarity. Prior research in this area includes work by 

Zhang et al. [14] and Kim et al. [7] on clothes matching 

based on color harmony and texture analysis, as well as 

Cheng et al.’s ChroMirror system [4], which helps users 

explore clothing color combinations. These systems 

considered real-world lighting and despite inconsistencies 

 

 
Figure 4. Images tested with a Color harmony measure 

incorporating shape information from Zhang et al. [13] 

 

 
Figure 5. A comparison of clothing colors in ideal vs real 

conditions from ChroMirror by Cheng et al. [4] 

DESIGN PROCESS 

GetDressed was built using iterative design and 

development. We began with ethnographic data gathering 

to determine the needs and requirements for our system, 

then developed motivating scenarios, storyboards and a 

low-fidelity prototype to elicit user feedback about the 

direction we were going. This feedback was acquired in a 

first user study and from it we made several design changes 

and changed focus for the development of our final 

functional prototype. 

 

Ethnographic data gathering 

In early data gathering, we focused on understanding user’s 

habits and desires. We determined several main points from 

data elicited from potential users: Users have an intuition 

for clothing and outfits that they think look good, even if 

they do not consider themselves fashion-centric. Users have 

much more trouble generating good-looking outfits, even if 

they do consider themselves fashion-centric. The most 

fundamental reasons for outfit choices that users make are 

functionality (e.g. rain boots), appropriateness for an 

occasion (e.g. formal attire), and laundered state of 

clothing. Users frequently observe others’ clothing, and are 

often inspired by what they see. 

 

Scenarios 

We developed three motivating scenarios to help us 

understand the needs and requirement of our system, and 

how users might interact with it and use it in their daily 

lives. From these scenarios, we sketched storyboards to 

show to users and elicit feedback about them. 

 

Scenario 1. A student is accustomed to wearing whatever 

clothing he happens to have at hand. One day, he dresses 

poorly for an interview, suddenly becomes self-

consciousness about his attire, which affects his self-

confidence, and he ultimately does poorly in his interview. 

He began using GetDressed, and benefited from the 

system’s recommendation because it always reminds him of 

the day’s calendar event and gives him the appropriate 

suggestions for how to dress for the day.. 

 

Scenario 2. A busy single mother raising two children 

worries about how to dress her children with the limited 

time she has every morning. She is especially concerned 

with picking appropriate outfits for the day’s weather. Last 

time she didn’t check the weather forecast, she didn’t dress 

her children warmly enough for a very chilly cold front that 

passed through that afternoon. She began to use 

GetDressed, and appreciates that by simply glancing at her 

phone for a few seconds, she can see the day’s weather and 

an easy list of suggestions for how to dress her children. 

GetDressed also makes it easy for her to make sure her 

children always look their best, by not repeating outfit 

suggestions too frequently. 

 

Scenario 3. An aspiring fashionista, who already knows a 

lot about fashion rules, uses GetDressed because it makes it 



easy for her to get quick feedback on some of her fashion 

ideas. The system’s recommendations – though not perfect 

– often provide her inspiration. She also likes to use 

GetDressed to very quickly visualize many different outfit 

combinations.  

 

Lo-fi prototype description 

We developed a low-fidelity prototype that covered the 

main points of our system, but with limited functionality. 

The prototype include 3 modes: a Profile Input Mode, an 

Outfit Advisor Mode, and a Virtual Shopping Mode.  

 

    
Figure 6: In the profile input mode, a users inputs some 

basic information about themselves and their 

preferences about colors and clothing styles. 

 

 
Figure 7: In the outfit advisor mode, a user is presented 

with 3 recommended outfits and can switch between 

them. Dummy weather and calendar information are 

displayed, as well as a mood input and placeholders for 

like/dislike and customize buttons. 

 

 
Figure 8: In the virtual shopping mode, users are 

presented with a catalog of clothing images in several 

categories. They can drag clothes they like into their 

virtual wardrobe, and see the items they’re already 

added. 

 

Feedback on scenarios and lo-fi prototype 

We showed the scenarios we developed to a set of users in 

the form of storyboards. The feedback we received can be 

summarized in two main points: Most users agreed that 

GetDressed would be helpful to the characters in the 

scenario, and they associated themselves at least partly with 

one of these characters, showing that the system we 

envisioned may have broad appeal. And users agreed that 

the student character would benefit most from our system, 

providing supporting evidence for our belief that fashion-

unaware users may benefit the most from our system. 

 

Feedback we received about the low-fidelity prototype was 

useful to us in updating our design decisions for 

GetDressed. There was fixed responses concerning the 

color ranking input and favorite style selection components 

of the profile input mode, so we made the decision to 

refocus our efforts on the two other modes of GetDressed: 

the virtual shopping mode and the outfit advisor mode. Our 

users generally liked the advisor mode, particularly the 

overall layout and the outfit visualization. Some users 

didn’t think mood would be a useful input, and we 

ultimately agreed to lower the priority of this contextual 

input in our development plan. Most users also liked the 

virtual shopping mode, and expressed suggestions for 

improvements, such as adding a search option and the 

ability to see the wardrobe items in categories. Both of 

these features were added to our design spec and made it 

into our final functional prototype. 

 

User Study 1 

After implementing some of GetDressed’s functionality 

(particularly gender- and style-specifications), and making 

some of the changes requested in our user feedback, we ran 

a first user study to more fully evaluate our prototype to 

that point. We focused on answering several several 

questions: How do the users decide the clothing they buy 

and wear? Do users think our system will be useful? Are 



there any additional requested features that make sense to 

add to our system? 

 

The most commonly reported sources of inspiration for 

fashion were TV/movies, and what they see other people 

wear in public, but we saw that our subjects varied highly in 

how often they shop for new clothes. One cluster of 

subjects shop about once every month or two, while another 

group reported shopping about once or twice a year or 

“very rarely”. Additionally, most of our subjects reported 

that they shop for clothes online, but only rarely. The most 

commonly reported factors influencing clothes buying were 

price, style, comfort, fit, and practicality.  

 

Almost all of our subjects reported that they would find it 

“helpful” or “very helpful” to have easy­ to ­access clothing 

advice. They also said that they’d be equally comfortable or 

more comfortable receiving such advice from a program 

than from a person. When asked whether this advice would 

still be helpful if it came from a program with lower­ 

quality suggestions than a person, most of the subjects 

responded that it would still be “helpful” to “very helpful”, 

though two responded that it would not be helpful if that 

were the case. Most subjects responded that they would like 

such a program to run on a mobile device with a touch 

screen. We decided to ensure that the system does in fact 

work on mobile devices. 

 

Design Revisions 

Following feedback from our first user study, we decided to 

again re-evaluate the focus for our functional prototype 

implementation. We left the profile input mode unchanged 

to work on the remainder of the system. For the outfit 

advisor mode, we focusing on making sure we can generate 

likeable outfit based on both contextual information and 

stylistic metrics. For the virtual shopping mode, we focused 

on ensuring that users can use the mode to build a virtual 

wardrobe they are happy with.  

 

   
Figure 9: A simple icon/button change that addressed a 

breakdown in usability 

 

One simple problem with our design which was revealed in 

the user study is we needed better navigation affordances in 

the virtual shopping mode. In the early prototype, we use a 

logo image to direct the user back to the other modes. 

However, most users didn’t realize they could click the logo 

image and didn’t know what to do when they finished 

choosing clothes for their wardrobe. To address this 

affordance breakdown, we add a button called ”done” for 

the user to click when they finish building their virtual 

wardrobe. 

 

In addition to implementing the search feature in our virtual 

shopping mode, another change we made was displaying 

categories in the virtual wardrobe view. We also revised our 

clothing categories in response to feedback from our users 

saying that the prior categories were too coarse. In the outfit 

advisor mode, we focused primarily on ensuring the 

recommendation engine incorporates the metadata we 

extract. 

 

 
Figure 10: The category view we added to the virtual 

wardrobe visualization. 

 

There are also some things we decided not to implement 

due to time constraints and less attention from users. We 

didn’t implement mood contextual input, as it was not well-

received in early user feedback, and implementing it would 

have added substantial complexity. We also didn’t 

implement outfit customizations, due to time constraints. 

Outfit history scores were implemented and are evaluated 

by the recommendation engine, but we did not implement 

history score updates according to calendar events, since we 

knew that the participants in our user study would likely not 

have enough time with the system to repeat outfits. 

 
METHODS and IMPLEMENTATION 

GetDressed has two modes of functionality. First is the 

automatic daily outfit advisor that incorporates information 

about weather conditions, calendar events, user preferences 

and history, and a metric of color, style and texture 

matching to produce outfit recommendations generated 

from a model of the user’s own wardrobe. And second is an 

on-demand virtual shopping guide that will over time 

produce shopping suggestions based on the user’s dressing 

habits and preferences. This mode is used at this point in 

the prototype for building the user’s virtual wardrobe, and 

we have not tested it for virtual shopping after the wardrobe 

is built. 

 

 

 



Outfit Advisor Mode 

 

 
Figure 11: Outfit Advisor mode of GetDressed 

 

The first – and most visible – mode of GetDressed is the 

outfit advisor (Figure 11). GetDressed will check the 

weather and the user’s calendar events for the day and uses 

these contexts together with other information to generate a 

set of outfit recommendations and present visually them to 

the user. The user can then quickly swipe through the list of 

recommendations and select one to wear if they like. The 

weather and calendar information being evaluated are 

prominently shown alongside the outfit suggestions.  

 

Virtual Shopping Guide Mode 

 

 
Figure 12: Virtual Shopping mode of GetDressed 

 

The second interactive mode in GetDressed is the virtual 

shopping mode (Figure 12). This mode is used to select 

items for the user’s own wardrobe from on online catalog, 

and build a metadata-rich wardrobe model for the 

recommendation system to use in the outfit advisor mode. 

Though it is understood that no clothing catalog will be able 

to contain exact matches to all the clothes in a person’s 

wardrobe, we believe that close approximations suffice to 

produce useful recommendations. The rationale behind 

using a virtual shopping system to build the users wardrobe 

model is that by doing so, we can extract useful metadata 

about the clothing from the catalog source, and can avoid 

requiring the user to tediously enter information about their 

clothes. 

 

System Architecture. 

 

Contextual Information Sources 

Three types of contextual information are gathered to 

produce useful outfit recommendations to the user: weather 

status, calendar events, and the user’s mood. The first two 

of these are collected automatically from web APIs, while 

mood is left optional and is elicited from user input. To 

collect weather information for the user’s location, we use a 

simple jQuery plugin called SimpleWeather. It provides 

geolocation information, temperature, precipitation, cloud 

coverage, and wind speed. Calendar events are gathered 

from Google’s calendar API. Only the events for today’s 

date are gathered. Mood is optionally selected by the user 

from a graphical prompt that shows emoticons for a set of 

moods. The information from all three context sources are 

shown visually to the user and stored in HTML5 local 

storage for access by the rest of the GetDressed system. 

 

Wardrobe Model and Metadata 

The next module of our system is the wardrobe model and 

its associated metadata. To populate the user’s wardrobe 

model, we use GetDressed’s virtual shopping mode. Each 

item in the virtual shopping mode consists of an image for 

the clothing item, and some metadata associated with it. 

This metadata currently consists of the intended gender of 

the item, its category (t-shirt/dress shoes, etc.), color, and 

material, and a history score. To collect this metadata, we 

use a custom set of BigSemantics wrappers. We developed 

several wrappers specifically designed for online clothing 

sites. We use these wrappers to automatically extract image 

source url, clothes category, color, description, and 

material. 

 

Since color information has a large range of variety, and it’s 

not easy to be categorized, we came up with a color palette 

generator. The generator takes an image file as input and 

outputs the dominant color and color palette for this image. 

The color values are then transformed and stored in HSV 

format in order to facilitate future processing. Our color 

palette generator code is based on Color Thief . 

 

Outfit Evaluative Metrics 

This module of the GetDressed system consists of two 

kinds of metrics: comparative metrics and similarity 

metrics. Comparative metrics for color, category, and 

material are used to determine evaluative scores for outfit 

candidates. A similarity metric is also included in order to 

recommend similar clothes from online shops. The 

similarity score considers the color of the clothing



elements, their materials, and the categories they fall into. 

The categories are designed such that clothing formality 

(such as shirt sleeve length) is incorporated into the 

categories. 

 

User Profile and History  

We store and use attributes about the user’s profile and 

preference, and their outfit history as part of the 

recommendation system. The user’s profile is first 

generated from user input, and their preferences are 

determined in two ways. First, during the profile input 

stage, the user is asked to select their favorite colors and 

favorite types of outfit styles. These direct inputs are used 

to initialize their preference profile. The second way the 

user’s preferences are gathered is through their interaction 

with GetDressed. When they select an outfit, when they 

customize an outfit, and when they “like”, “dislike” or 

make an annotation about an outfit, we update their 

preferences accordingly. 

  

The user’s outfit history is stored in two ways: per clothing 

item, and for complete outfits. A clothing item’s clothing 

history is stored as a history score, which represents how 

frequency and recently it has been worn. An outfit’s history 

is stored similarly, but it includes links to the individual 

items it consists of. The user’s profile and history are 

currently stored in HTML5 local storage, but will be moved 

to a server-side database. 

 

Recommendation Engine 

This is the module of our system that actually produces 

outfit recommendations. It consists of two parts: an outfit 

generator, and an outfit evaluator. The generator produces 

outfit candidates from the items in the user’s wardrobe. The 

items are first filtered according to the contextual 

information gathered from the context extraction module, 

and to reduce the number of outfit candidates to produce, 

the process is seeded with prior liked outfits and new outfits 

are only generated as they are needed by the evaluation 

step. In the outfit evaluation step, an outfit candidate is 

scored according to the user’s preferences and history, and 

the evaluative metrics from the outfit evaluative metrics 

module. An outfit’s score will be a weighted sum of scores 

from the clothing attributes collected from the wardrobe 

metadata module, and these weights will be updated 

overtime and associated with the user’s profile. 

 

Outfit Visualization and User Interface 

Finally, the outfits that are scored highest by the 

recommendation engine are shown to the user as part of the 

web application. The visualization consists of images of the 

outfit’s clothing elements arranged to show the entire outfit. 

The web application can be run on both pc and mobile 

devices, and the user interface is built in JavaScript with 

jQuery plugins. 

 
EVALUATION 

The evaluation of GetDressed consisted of two main 

methods: system evaluation and recommendations 

evaluation. The goal of the system evaluation is to evaluate 

users’ satisfaction with the wardrobe model and the 

system’s recommendations. For the recommendations 

evaluation, we try to get a broad sense of the quality of our 

system’s outfit recommendations, especially considering 

whether they are regarded as fashionable. 

 

System Evaluation 

To evaluate user experience and whether users find 

GetDressed compatible with their own fashion sense, we 

observe the user interacting with our system and then 

 
Figure 13: System Architecture diagram for GetDressed 

 



collect questionnaire results afterward. This process is 

divided into four steps: 

 

1. Give user the task of building a virtual wardrobe that is 

meant to resemble his or her own wardrobe, while 

observing the user’s interaction with the system. 

2. Have the user fill out the first post-questionnaire 

(containing mostly Likert and semantic differential 

scales) about their experience with the wardrobe 

model. 

3. Move on to the advisor mode, give user the task of 

choosing one outfit to wear today, while observing the 

user’s interaction with the system. 

4. Have the user fill out the second post-questionnaire 

containing the questions about their experience on 

advisor model and satisfaction of system’s outfit 

recommendation. 

 

In total, we had 46 participants for this part of the 

evaluation. Eight of these participants we ran in-person 

under direct observation, and the remainder were run 

remotely and independently through Amazon Mechanical 

Turk. We found that the participants were mainly students, 

professors, and recent graduates who are working. 

 

We created six study conditions to assess key parts of our 

system (three for each of the two major modes of operation 

in the system). The study is performed between subjects, 

and conditions to be run were selected randomly. The six 

conditions and what they evaluate are described in Table 1. 

The dependent variable we measure in each case is how 

much the user likes the given system functionality. We also 

measure the user interaction time, and gather open-ended 

responses about their interaction.  

 

Recommendations Evaluation 

In the recommendations evaluations, we ask users only to 

rate individual outfit candidates. This evaluation attempts to 

balance one person’s clothing tastes against those of the 

public. The users here only need to see the recommendation 

outcomes and will provide their subjective feedback to each 

one. By randomly showing them our recommendation outfit 

result and randomly generated outfit result, and letting them 

rate these outfits, we can get quantitative data on how our 

recommendation performs. 

 

There are 74 participants in this crowd-sourced evaluation. 

Nine of these participants were contacted directly, and the 

remainder was from AMT from all around the world. 

Again, the participants were mostly young (18-35) students 

and workers. For this part of the study, there are two 

conditions: outfits generated by our system’s 

recommendation engine, and randomly generated outfits. 

This study is within subjects, with randomly selected outfits 

presented to the user to evaluate. The dependent variable is 

the rating for outfit represented by Likert scale. By 

calculating and aggregating them, we can find out how our 

system performs. The only further information we gathered 

was a self-assessment asking “how would you rate your 

ability to recognize a stylish outfit?” 

 

Results 

For user evaluation, our data comes from survey which 

contains 6 parts: backgrounds, shopping and outfit habits, 

questionnaire on wardrobe mode and advisor mode, 

interaction, and general feedback. Most questions give us 

quantitative data while the rest are user comments that can 

be considered as qualitative data. For all the diagrams, the 

horizontal coordinates denote the scale or rating (from 0 to 

5); the vertical coordinates denote counts (number of 

participants). Here, we examine the most significant results. 

 

Users’ Background: 

Most of the participants’ ages are between 18 and 35. It can 

also be inferred from the distribution on career and 

familiarity of technology. Male and female participants are 

evenly distributed. 59% of the participants are graduate 

students, and 74% claims to be very familiar with 

technology. So we can suggest that these are real potential 

users of our online clothes recommendation system. 

Regarding to shopping habits, more than half of the 

participants claim that they have above average fashion 

knowledge, and about 30% are very good with fashion. So 

this fits our system’s objective, to make it useful for both 

fashionista and common people. 

 

 
 

 
 

 



 

  

Wardrobe Model: 

User’s response to male wardrobe and female wardrobe 

don’t differ much, so here we’ll use male wardrobe to 

analyze the user response. Mean and Deviation of user 

ratings of system under different conditions are shown in 

the following table. 

 

Condition Mean Deviation 

Without Search 7.44 0.8464 

With Search 7.61 1.2581 

Static closet/ without customization 7.59 2.2219 

Table 1: User responses concerning usability of different 

Wardrobe Model conditions 

 

By comparing the mean value, we can conclude that users 

prefer wardrobe model with search function than one 

without search. However, static closet has higher mean 

value and larger deviation than dynamic closet without 

search function. This suggests that users have diverse 

opinions on static closet. 74% of users finds it more useful 

if they’re able to search for more online clothes, even when 

the search result is not optimized. 

 

Advisor Mode: 

Mean and Deviation of user ratings of system under 

different conditions are shown in the following table. 

 

Condition Mean Deviation 

Full recommendation 7.39 2.7179 

No context 6.95 4.6705 

Random recommendation 7.21 2.3259 

Table 2: User responses concerning usability of different 

Advisor Mode conditions 

 

By comparing the mean value, we may find that user 

actually prefer random recommendations. One possible 

explanation may be the limitation of clothing data, since we 

extract our clothes from one website, therefore, even 

random results don’t seem unreasonable. However, the 

following pie chart shows that 65% of users find the system 

with full recommendations more useful. 

  

System Interaction: 

Most users spend less than 5 minutes on interaction with 

advisor mode, and they spend less than 6 minutes on 

wardrobe mode.  User’s rating for all these three parts of 

our system are similarly distributed. Most responses lie 

within the range of 3 to 5. More than 50% of users vote for 

4 “above average”, and approximately 30% of users vote 

for 5 “good”. 

  

Many users commented that the interaction with the system 

was easy - in particular, easy to navigate and search. 

However, there were concerns that clothing choices is 

limited. Users commented that the outfit recommendations 

were helpful, looked good, and usually matching well. 

Users found our profile input easy to use, and felt that our 

system know them better after they finish the profile input 

part. Some users however were annoyed that they had to 

input information about themselves before using the 

system. 

 

Quality of Recommendations. 

For the recommendations evaluation, we received 74 valid 

responses. From these data, we ran the single-tail, mixed-

variance T-test, trying to figure out whether our 

recommendation is better than random result. We have a 

small effect size (0.17), but strong statistical significance (p 

= 0.034860787 for mean-only comparison, and p =  

0.006507725 for direct value comparison). Since p <= 0.05 

is considered statistically significant, and less than p = 0.01 

is considered very significant. It confirms that our users 

liked the actually recommendations more than the random 

recommendations, though only a very little bit more. 

However, we are sure that they definitely liked our system 

more. There is only a 0.65% chance that those preference 

results were due to random error. 

 
DISCUSSION 

Firstly, most people found our system is helpful. Over, 67% 

people think our system is useful to decide what to wear for 

the day’s weather and events and your mood. And there are 

still over 50% of participants think our system can provide 

the help to be more stylish and expressive. Participants 

liked advisor mode more than wardrobe mode. The reason 

may be setting up wardrobe takes time. Responses for 

different conditions in our evaluation tended toward high 

scores (averaging about 7 overall), and we were surprised to 

see that the difference between the conditions in the virtual 

shopping mode and the outfit advisor mode were very small 

(Tables 1 and 2). We attribute these differences to bias in 

our study methodology and  

 

For virtual wardrobe mode, one significant thing is 

searching function is really useful. This function remains 

me think of an instant messaging application called Tencent 

QQ. This instant messaging software has a great function of 

adding stickers from searching Internet. You can input the 

description of the stickers you want and the search result 

can be added into your own stickers gallery. I still 

remember when this new function of searching stickers has 

been put online, many of users of this software using this 

function. The feedback of this function is really great. 

That’s why we need searching function for our 

recommendation system. User needs their ability of 

changing default wardrobe. 



 

We were surprised that the perceived difference between 

randomly generated outfits and those produced by our 

system were so low. We attribute this small effect size to a 

low level of personalization in the prototype, and the fact 

that the limited clothing dataset we used includes mostly 

stylish clothing and it could be argued that almost any outfit 

generated from it may look good. To improve on the quality 

of the outfit recommendations, we need to have more 

personalized information about the user - perhaps 

information about fabrics, patterns and textures they like, 

and more parseable information about style categories they 

like. Additionally, metadata parsing of more information 

sources would be needed to ensure that the clothing that 

users actually want to see in their wardrobes can be 

evaluated correctly by the recommendation system. 

 
CONCLUSIONS 

We’ve present GetDressed: an outfit recommendation 

system that uses both contextual information and a user-

generated virtual wardrobe to provide actionable outfit 

suggestions. We do this by filtering out the clothing items 

that are inappropriate for the day’s weather and calendar 

events, then scoring a set of outfit candidates with 

evaluative metrics based on basic color harmony and 

clothes matching rules, and outfit history to produce a small 

set of recommended outfits. A key innovation of 

GetDressed is that it uses an easy-to-use virtual shopping 

mode to populate a wardrobe model for the user so that 

outfit recommendations can be similar to clothing they 

actually own, and therefore the recommendations are 

actually attainable. 

 

We determined in our evaluation of the system that many 

users would find it helpful and that they find the virtual 

wardrobe model as a practical and acceptable way to tell 

GetDressed about the clothes they own without having to 

spend a long time manually entering metadata themselves. 

However, we also found that in order to make a bigger 

impact on people’s lives, and in particular in order to to 

produce more likeable outfit recommendations, we’d need 

to improve the personalization options in GetDressed, and 

be able to extract relevant clothing metadata from more 

sources. 

 

As a system investigating the use of contextual information 

from multiple sources to produce personalized 

recommendations, we believe GetDressed may be a 

valuable contribution to the expert systems research 

community. Additionally, we believe that the virtual 

shopping mode method for building a metadata-rich 

wardrobe model without demanding too much of the user is 

a promising endeavor that could use further exploration. 

Since most data sources do not provide relevant metadata 

that could be useful to a system like GetDressed (clothing 

color, material, patterns, texture, sleeve-length, etc.), we 

believe that this could be an interesting problem for 

computer vision research, particular from the fine-grained 

visual categorization sub-community. 

 
FUTURE WORK 

Ideas for future work on GetDressed fall into three 

categories: data extraction, personalization, and live 

visualization. Automatic clothing metadata extraction from 

different sources (in particular from search results) is 

needed for need for the recommendation system to evaluate 

the clothing that people want to see if. No one source will 

be broad enough to cover every user’s needs, and many 

sources do not have associated metadata for their catalog 

items that could be useful to us. Additionally, using the 

user’s mood as a contextual input of our recommendation 

system is something that we purposefully backpedaled on 

due to the added complications of understanding user intent 

and producing computational rules for the effect of mood 

on desired clothing style. This contextual source and other 

potential ones (e.g. social influence) would also require a 

deeper understanding of psychology and sociology than we 

have available to us at present. 

 

The personalization and customization functions in our 

system have significant room for improvement. For 

example, users can recombine the outfits if they don’t like 

the existing recommendations. And additional information 

about the user can be leveraged in the outfit advisor - such 

as their thoughts on different fabrics, patterns and textures, 

as well as more granular information style categories they 

like. 

 

Finally, providing a live visualization of a recommended 

outfit is something that we thing would be very valuable to 

users and could significantly augment the power of our 

system to allow users to try out different outfit 

combinations and shop for new clothes. Such live 

visualization of outfits would be displayed superimposed on 

users’ bodies using visual body tracking, such as that made 

possible by the Microsoft Kinect and other systems. 
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