
GetDressed: A Personalized and Contextually-Aware
Clothing Advisor for the Home

Zhijiao Liu Jesus Suarez You Wu Feiyu Yu

zhijiaoliu@tamu.edu jesussuarez@tamu.edu urianawu@tamu.edu ifeiyuyu@tamu.edu

Texas A&M University

College Station, TX 77843, USA

ABSTRACT

This paper presents our work on GetDressed, a

contextually-aware clothing recommendation system. There

is an unmet need for automated and personalized advice

about the daily task of selecting an outfit. This task may

seem small, but it has a real impact on people’s lives and

many people are unsatisfied with the outfits they select and

the time and effort they spend deciding on them. The

system we developed uses contextual information together

with a personal user profile and wardrobe model to advise

the user what outfits are appropriate given the day’s events

and weather conditions, the user’s preferences and history,

and a style coordination metric. We performed a two-part

user study to evaluate our system and the outfit

recommendations it produces. Comparing three conditions

for each of the two modes in GetDressed (Virtual Wardrobe

Builder and Outfit Advisor), we found that our full system

is better liked than versions with key missing components,

as well as versions with static and randomly generated

content, though the difference is smaller than we expected.

In evaluating the outfit recommendations, we found that

they are considered more stylish than randomly generated

outfits, but again, by a smaller margin than expected.

Nonetheless, we conclude from the user feedback that

GetDressed can be useful to many people.

INTRODUCTION

Every morning, people everywhere check the weather,

consider their schedule for the day, and think about what to

wear. What to wear is perhaps a small decision, but it is one

that is important to many people and has the potential to

affect anyone’s day. From early data gathering, we

determined that many people are in a position where they

care about what they wear and how they present

themselves, but feel that they lack the time and expertise to

create outfits they consider fashionable. Many of the

potential users we spoke with expressed that they would

appreciate having easy access to personalized clothing

advice as part of their daily routine, even if the advice is

imperfect.

Many clothing recommendation systems exist – especially

for fashion advice and virtual shopping – but none fully

addresses the basic needs of the morning outfit selection

routine. Most existing systems either suggest clothes to buy

or allow one to share or record outfits they have worn, but

do not provide recommendations about one’s own clothes,

much less take into account contextual information to make

such a recommendation. On the other hand, contextual

notification systems (e.g. for weather and calendar events)

provide useful information, but do not leverage this

information to produce tangible advice. Additionally, most

systems don’t make recommendations from the user’s own

wardrobe, making it difficult to make their advice

actionable (especially as part of a daily routine).

We’ve built a new system, called GetDressed, which

integrates live contextual information with a personality

profile of a user and a model of their wardrobe to generate

outfit recommendations to meet their needs. The system

utilizes web-sourced metadata to populate the user’s

wardrobe model, thus alleviating them of tedious manual

data entry to make the system work. GetDressed helps users

express themselves through their clothing, simplifies an

important part of their daily routines, and helps them find

new styles tailored to their preferences. The goal is to help

users feel more confident in making fashionable outfit

decisions, as well as help them be more expressive and

adventurous in what they wear.

GetDressed consists of two main modes: a virtual shopping

mode, and an outfit advisor mode. The first is used to

quickly populate a virtual wardrobe with clothing similar to

what the user actually owns. This eliminates the need for

tedious hand labeling, though at a cost of reduced realism.

The wardrobe that the user builds is populated from online

sources, and from these sources metadata attributes about

the clothing are also gathered. These attributes, along with

history information make up the wardrobe model of the

system, which is used by the outfit advisor mode to actually

produce recommendations based on what the user likes, as

well as the day’s conditions, as determined from two

contextual sources: weather, and the user’s calendar events.

Rudimentary stylistic metrics also impact the

recommendations produced.

We hypothesize that users will consider the complete

GetDressed system to be useful to them, that the virtual

shopping mode will be regarded as a easy and practical way

to build a personalized virtual wardrobe, and that the outfit

recommendations that the system generates are appealing to

users. We evaluated the GetDressed system and the

recommendations it produces in a two-part user study with

in-person and online subjects. We conclude that GetDressed

can be valuable and useful to many people, especially

people who lack confidence in making their own stylish

outfits. However, further personalization options and access

to greater clothing variety may be needed before

GetDressed can make a sizeable impact on people’s lives.

PRIOR WORK

Several existing systems and publications are related to

GetDressed. A common these in these works is the

understanding that many people have a desire for clothing

recommendations, so similar needs and expectations are

addressed by the various systems. In each work identified

here, there are aspects that we found valuable and which

influenced components of the system we developed.

However, we also identify points of departure from how

these systems address some of the needs of the users and

use cases we envision. We’ve organized this related work

into three categories: specialized clothing recommendation

systems, context-aware recommendations, and clothes

matching and similarity. Here we discuss them and their

relationships to each other and to GetDressed.

Specialized Clothing Recommendation Systems

In specialized clothing recommendation systems, there exist

several systems that provide recommendations for specific

occasions or situations. Liu et al. [8] and Shen et al. [12] for

example, developed systems that make clothing

recommendations for specific occasions or scenarios, such

as weddings or dating (Figures 1 and 2, respectively). In

each case, user input was used to define the situation. These

systems are conceptually similar to ours, especially with

respect to GetDressed’s context-aware recommendations,

but they differ in that they only consider context in a single

dimension. GetDressed will incorporate contextual

information from both weather and calendar events in

making its recommendations, as well as a user profile and

wardrobe model.

Figure 1: The motivating problem of finding an

appropriate outfit for a specific occasion, from “Magic

Closet” by Liu et al. [8]

Figure 2. A sample recommendation set from “Scenario-

Based Recommendation” by Shen et al. [12]

Non-academic examples of clothing recommendation

systems include SuitUp!
1
, a social fashion-sharing and

recommendation system, and Civia’s What To Wear guide
2
,

a static catalog of garment recommendations for cyclists.

Civia’s What to Wear example (Figure 3) is interesting

because, though static, it incorporates a feature that we

hope to integrate into our own system: expert knowledge. In

GetDressed, there is a need for a notion of fashionability

and coordination quality to produce good recommendations

and to evaluate outfit options. The knowledge for producing

these metrics will come from evaluative qualities elucidated

from fashion experts and formalized into a set of

measurable properties and rules.

Figure 3. Static outfit advice for different weather

conditions from Civia Cycle’s What to Wear page
2

Context-Aware Recommendations

Understanding contextual information and using it

intelligently is a concept that extends to many areas.

Campos et al. [1] for example, uses information about time

and social company to make movie recommendations.

Hong et al. [6] describe a context-aware personalization

framework that is applicable to many activities including

shopping and dining. Chen [3] meanwhile, describes a

collaborative filtering system that uses contextual

1
 http://www.kerrykao.com/suitup

2
 http://www.civiacycles.com/whattowear

information to predict user preferences. And in a patent

filed by Chakravarty and Jain of IBM [2], a system is

described for making recommendations for wearable attire

and digital program recording based on calendar events.

This last example is most similar in function to GetDressed,

and it is in fact one of very few systems we found that

actually makes attire recommendations based on a user’s

own wardrobe (rather than an arbitrary collection, as in a

virtual shopping example). Though this patented system

requires embedding RFID tags in clothing to work, it

highlights the need for a better and more portable solution.

Embedding RFID tags (or similar markers) in clothing is far

too big of a burden to place on users, and is precisely what

we try to avoid by using online-sourced metadata to collect

the information we need about a user’s wardrobe.

Clothes Matching and Similarity

A critically important consideration in ensuring that our

system produces valuable outfit recommendations is the

need for a computational model of garment matching and

similarity. Prior research in this area includes work by

Zhang et al. [14] and Kim et al. [7] on clothes matching

based on color harmony and texture analysis, as well as

Cheng et al.’s ChroMirror system [4], which helps users

explore clothing color combinations. These systems

considered real-world lighting and despite inconsistencies

Figure 4. Images tested with a Color harmony measure

incorporating shape information from Zhang et al. [13]

Figure 5. A comparison of clothing colors in ideal vs real

conditions from ChroMirror by Cheng et al. [4]

DESIGN PROCESS

GetDressed was built using iterative design and

development. We began with ethnographic data gathering

to determine the needs and requirements for our system,

then developed motivating scenarios, storyboards and a

low-fidelity prototype to elicit user feedback about the

direction we were going. This feedback was acquired in a

first user study and from it we made several design changes

and changed focus for the development of our final

functional prototype.

Ethnographic data gathering

In early data gathering, we focused on understanding user’s

habits and desires. We determined several main points from

data elicited from potential users: Users have an intuition

for clothing and outfits that they think look good, even if

they do not consider themselves fashion-centric. Users have

much more trouble generating good-looking outfits, even if

they do consider themselves fashion-centric. The most

fundamental reasons for outfit choices that users make are

functionality (e.g. rain boots), appropriateness for an

occasion (e.g. formal attire), and laundered state of

clothing. Users frequently observe others’ clothing, and are

often inspired by what they see.

Scenarios

We developed three motivating scenarios to help us

understand the needs and requirement of our system, and

how users might interact with it and use it in their daily

lives. From these scenarios, we sketched storyboards to

show to users and elicit feedback about them.

Scenario 1. A student is accustomed to wearing whatever

clothing he happens to have at hand. One day, he dresses

poorly for an interview, suddenly becomes self-

consciousness about his attire, which affects his self-

confidence, and he ultimately does poorly in his interview.

He began using GetDressed, and benefited from the

system’s recommendation because it always reminds him of

the day’s calendar event and gives him the appropriate

suggestions for how to dress for the day..

Scenario 2. A busy single mother raising two children

worries about how to dress her children with the limited

time she has every morning. She is especially concerned

with picking appropriate outfits for the day’s weather. Last

time she didn’t check the weather forecast, she didn’t dress

her children warmly enough for a very chilly cold front that

passed through that afternoon. She began to use

GetDressed, and appreciates that by simply glancing at her

phone for a few seconds, she can see the day’s weather and

an easy list of suggestions for how to dress her children.

GetDressed also makes it easy for her to make sure her

children always look their best, by not repeating outfit

suggestions too frequently.

Scenario 3. An aspiring fashionista, who already knows a

lot about fashion rules, uses GetDressed because it makes it

easy for her to get quick feedback on some of her fashion

ideas. The system’s recommendations – though not perfect

– often provide her inspiration. She also likes to use

GetDressed to very quickly visualize many different outfit

combinations.

Lo-fi prototype description

We developed a low-fidelity prototype that covered the

main points of our system, but with limited functionality.

The prototype include 3 modes: a Profile Input Mode, an

Outfit Advisor Mode, and a Virtual Shopping Mode.

Figure 6: In the profile input mode, a users inputs some

basic information about themselves and their

preferences about colors and clothing styles.

Figure 7: In the outfit advisor mode, a user is presented

with 3 recommended outfits and can switch between

them. Dummy weather and calendar information are

displayed, as well as a mood input and placeholders for

like/dislike and customize buttons.

Figure 8: In the virtual shopping mode, users are

presented with a catalog of clothing images in several

categories. They can drag clothes they like into their

virtual wardrobe, and see the items they’re already

added.

Feedback on scenarios and lo-fi prototype

We showed the scenarios we developed to a set of users in

the form of storyboards. The feedback we received can be

summarized in two main points: Most users agreed that

GetDressed would be helpful to the characters in the

scenario, and they associated themselves at least partly with

one of these characters, showing that the system we

envisioned may have broad appeal. And users agreed that

the student character would benefit most from our system,

providing supporting evidence for our belief that fashion-

unaware users may benefit the most from our system.

Feedback we received about the low-fidelity prototype was

useful to us in updating our design decisions for

GetDressed. There was fixed responses concerning the

color ranking input and favorite style selection components

of the profile input mode, so we made the decision to

refocus our efforts on the two other modes of GetDressed:

the virtual shopping mode and the outfit advisor mode. Our

users generally liked the advisor mode, particularly the

overall layout and the outfit visualization. Some users

didn’t think mood would be a useful input, and we

ultimately agreed to lower the priority of this contextual

input in our development plan. Most users also liked the

virtual shopping mode, and expressed suggestions for

improvements, such as adding a search option and the

ability to see the wardrobe items in categories. Both of

these features were added to our design spec and made it

into our final functional prototype.

User Study 1

After implementing some of GetDressed’s functionality

(particularly gender- and style-specifications), and making

some of the changes requested in our user feedback, we ran

a first user study to more fully evaluate our prototype to

that point. We focused on answering several several

questions: How do the users decide the clothing they buy

and wear? Do users think our system will be useful? Are

there any additional requested features that make sense to

add to our system?

The most commonly reported sources of inspiration for

fashion were TV/movies, and what they see other people

wear in public, but we saw that our subjects varied highly in

how often they shop for new clothes. One cluster of

subjects shop about once every month or two, while another

group reported shopping about once or twice a year or

“very rarely”. Additionally, most of our subjects reported

that they shop for clothes online, but only rarely. The most

commonly reported factors influencing clothes buying were

price, style, comfort, fit, and practicality.

Almost all of our subjects reported that they would find it

“helpful” or “very helpful” to have easy­ to ­access clothing

advice. They also said that they’d be equally comfortable or

more comfortable receiving such advice from a program

than from a person. When asked whether this advice would

still be helpful if it came from a program with lower­

quality suggestions than a person, most of the subjects

responded that it would still be “helpful” to “very helpful”,

though two responded that it would not be helpful if that

were the case. Most subjects responded that they would like

such a program to run on a mobile device with a touch

screen. We decided to ensure that the system does in fact

work on mobile devices.

Design Revisions

Following feedback from our first user study, we decided to

again re-evaluate the focus for our functional prototype

implementation. We left the profile input mode unchanged

to work on the remainder of the system. For the outfit

advisor mode, we focusing on making sure we can generate

likeable outfit based on both contextual information and

stylistic metrics. For the virtual shopping mode, we focused

on ensuring that users can use the mode to build a virtual

wardrobe they are happy with.

Figure 9: A simple icon/button change that addressed a

breakdown in usability

One simple problem with our design which was revealed in

the user study is we needed better navigation affordances in

the virtual shopping mode. In the early prototype, we use a

logo image to direct the user back to the other modes.

However, most users didn’t realize they could click the logo

image and didn’t know what to do when they finished

choosing clothes for their wardrobe. To address this

affordance breakdown, we add a button called ”done” for

the user to click when they finish building their virtual

wardrobe.

In addition to implementing the search feature in our virtual

shopping mode, another change we made was displaying

categories in the virtual wardrobe view. We also revised our

clothing categories in response to feedback from our users

saying that the prior categories were too coarse. In the outfit

advisor mode, we focused primarily on ensuring the

recommendation engine incorporates the metadata we

extract.

Figure 10: The category view we added to the virtual

wardrobe visualization.

There are also some things we decided not to implement

due to time constraints and less attention from users. We

didn’t implement mood contextual input, as it was not well-

received in early user feedback, and implementing it would

have added substantial complexity. We also didn’t

implement outfit customizations, due to time constraints.

Outfit history scores were implemented and are evaluated

by the recommendation engine, but we did not implement

history score updates according to calendar events, since we

knew that the participants in our user study would likely not

have enough time with the system to repeat outfits.

METHODS and IMPLEMENTATION

GetDressed has two modes of functionality. First is the

automatic daily outfit advisor that incorporates information

about weather conditions, calendar events, user preferences

and history, and a metric of color, style and texture

matching to produce outfit recommendations generated

from a model of the user’s own wardrobe. And second is an

on-demand virtual shopping guide that will over time

produce shopping suggestions based on the user’s dressing

habits and preferences. This mode is used at this point in

the prototype for building the user’s virtual wardrobe, and

we have not tested it for virtual shopping after the wardrobe

is built.

Outfit Advisor Mode

Figure 11: Outfit Advisor mode of GetDressed

The first – and most visible – mode of GetDressed is the

outfit advisor (Figure 11). GetDressed will check the

weather and the user’s calendar events for the day and uses

these contexts together with other information to generate a

set of outfit recommendations and present visually them to

the user. The user can then quickly swipe through the list of

recommendations and select one to wear if they like. The

weather and calendar information being evaluated are

prominently shown alongside the outfit suggestions.

Virtual Shopping Guide Mode

Figure 12: Virtual Shopping mode of GetDressed

The second interactive mode in GetDressed is the virtual

shopping mode (Figure 12). This mode is used to select

items for the user’s own wardrobe from on online catalog,

and build a metadata-rich wardrobe model for the

recommendation system to use in the outfit advisor mode.

Though it is understood that no clothing catalog will be able

to contain exact matches to all the clothes in a person’s

wardrobe, we believe that close approximations suffice to

produce useful recommendations. The rationale behind

using a virtual shopping system to build the users wardrobe

model is that by doing so, we can extract useful metadata

about the clothing from the catalog source, and can avoid

requiring the user to tediously enter information about their

clothes.

System Architecture.

Contextual Information Sources

Three types of contextual information are gathered to

produce useful outfit recommendations to the user: weather

status, calendar events, and the user’s mood. The first two

of these are collected automatically from web APIs, while

mood is left optional and is elicited from user input. To

collect weather information for the user’s location, we use a

simple jQuery plugin called SimpleWeather. It provides

geolocation information, temperature, precipitation, cloud

coverage, and wind speed. Calendar events are gathered

from Google’s calendar API. Only the events for today’s

date are gathered. Mood is optionally selected by the user

from a graphical prompt that shows emoticons for a set of

moods. The information from all three context sources are

shown visually to the user and stored in HTML5 local

storage for access by the rest of the GetDressed system.

Wardrobe Model and Metadata

The next module of our system is the wardrobe model and

its associated metadata. To populate the user’s wardrobe

model, we use GetDressed’s virtual shopping mode. Each

item in the virtual shopping mode consists of an image for

the clothing item, and some metadata associated with it.

This metadata currently consists of the intended gender of

the item, its category (t-shirt/dress shoes, etc.), color, and

material, and a history score. To collect this metadata, we

use a custom set of BigSemantics wrappers. We developed

several wrappers specifically designed for online clothing

sites. We use these wrappers to automatically extract image

source url, clothes category, color, description, and

material.

Since color information has a large range of variety, and it’s

not easy to be categorized, we came up with a color palette

generator. The generator takes an image file as input and

outputs the dominant color and color palette for this image.

The color values are then transformed and stored in HSV

format in order to facilitate future processing. Our color

palette generator code is based on Color Thief .

Outfit Evaluative Metrics

This module of the GetDressed system consists of two

kinds of metrics: comparative metrics and similarity

metrics. Comparative metrics for color, category, and

material are used to determine evaluative scores for outfit

candidates. A similarity metric is also included in order to

recommend similar clothes from online shops. The

similarity score considers the color of the clothing

elements, their materials, and the categories they fall into.

The categories are designed such that clothing formality

(such as shirt sleeve length) is incorporated into the

categories.

User Profile and History

We store and use attributes about the user’s profile and

preference, and their outfit history as part of the

recommendation system. The user’s profile is first

generated from user input, and their preferences are

determined in two ways. First, during the profile input

stage, the user is asked to select their favorite colors and

favorite types of outfit styles. These direct inputs are used

to initialize their preference profile. The second way the

user’s preferences are gathered is through their interaction

with GetDressed. When they select an outfit, when they

customize an outfit, and when they “like”, “dislike” or

make an annotation about an outfit, we update their

preferences accordingly.

The user’s outfit history is stored in two ways: per clothing

item, and for complete outfits. A clothing item’s clothing

history is stored as a history score, which represents how

frequency and recently it has been worn. An outfit’s history

is stored similarly, but it includes links to the individual

items it consists of. The user’s profile and history are

currently stored in HTML5 local storage, but will be moved

to a server-side database.

Recommendation Engine

This is the module of our system that actually produces

outfit recommendations. It consists of two parts: an outfit

generator, and an outfit evaluator. The generator produces

outfit candidates from the items in the user’s wardrobe. The

items are first filtered according to the contextual

information gathered from the context extraction module,

and to reduce the number of outfit candidates to produce,

the process is seeded with prior liked outfits and new outfits

are only generated as they are needed by the evaluation

step. In the outfit evaluation step, an outfit candidate is

scored according to the user’s preferences and history, and

the evaluative metrics from the outfit evaluative metrics

module. An outfit’s score will be a weighted sum of scores

from the clothing attributes collected from the wardrobe

metadata module, and these weights will be updated

overtime and associated with the user’s profile.

Outfit Visualization and User Interface

Finally, the outfits that are scored highest by the

recommendation engine are shown to the user as part of the

web application. The visualization consists of images of the

outfit’s clothing elements arranged to show the entire outfit.

The web application can be run on both pc and mobile

devices, and the user interface is built in JavaScript with

jQuery plugins.

EVALUATION

The evaluation of GetDressed consisted of two main

methods: system evaluation and recommendations

evaluation. The goal of the system evaluation is to evaluate

users’ satisfaction with the wardrobe model and the

system’s recommendations. For the recommendations

evaluation, we try to get a broad sense of the quality of our

system’s outfit recommendations, especially considering

whether they are regarded as fashionable.

System Evaluation

To evaluate user experience and whether users find

GetDressed compatible with their own fashion sense, we

observe the user interacting with our system and then

Figure 13: System Architecture diagram for GetDressed

collect questionnaire results afterward. This process is

divided into four steps:

1. Give user the task of building a virtual wardrobe that is

meant to resemble his or her own wardrobe, while

observing the user’s interaction with the system.

2. Have the user fill out the first post-questionnaire

(containing mostly Likert and semantic differential

scales) about their experience with the wardrobe

model.

3. Move on to the advisor mode, give user the task of

choosing one outfit to wear today, while observing the

user’s interaction with the system.

4. Have the user fill out the second post-questionnaire

containing the questions about their experience on

advisor model and satisfaction of system’s outfit

recommendation.

In total, we had 46 participants for this part of the

evaluation. Eight of these participants we ran in-person

under direct observation, and the remainder were run

remotely and independently through Amazon Mechanical

Turk. We found that the participants were mainly students,

professors, and recent graduates who are working.

We created six study conditions to assess key parts of our

system (three for each of the two major modes of operation

in the system). The study is performed between subjects,

and conditions to be run were selected randomly. The six

conditions and what they evaluate are described in Table 1.

The dependent variable we measure in each case is how

much the user likes the given system functionality. We also

measure the user interaction time, and gather open-ended

responses about their interaction.

Recommendations Evaluation

In the recommendations evaluations, we ask users only to

rate individual outfit candidates. This evaluation attempts to

balance one person’s clothing tastes against those of the

public. The users here only need to see the recommendation

outcomes and will provide their subjective feedback to each

one. By randomly showing them our recommendation outfit

result and randomly generated outfit result, and letting them

rate these outfits, we can get quantitative data on how our

recommendation performs.

There are 74 participants in this crowd-sourced evaluation.

Nine of these participants were contacted directly, and the

remainder was from AMT from all around the world.

Again, the participants were mostly young (18-35) students

and workers. For this part of the study, there are two

conditions: outfits generated by our system’s

recommendation engine, and randomly generated outfits.

This study is within subjects, with randomly selected outfits

presented to the user to evaluate. The dependent variable is

the rating for outfit represented by Likert scale. By

calculating and aggregating them, we can find out how our

system performs. The only further information we gathered

was a self-assessment asking “how would you rate your

ability to recognize a stylish outfit?”

Results

For user evaluation, our data comes from survey which

contains 6 parts: backgrounds, shopping and outfit habits,

questionnaire on wardrobe mode and advisor mode,

interaction, and general feedback. Most questions give us

quantitative data while the rest are user comments that can

be considered as qualitative data. For all the diagrams, the

horizontal coordinates denote the scale or rating (from 0 to

5); the vertical coordinates denote counts (number of

participants). Here, we examine the most significant results.

Users’ Background:

Most of the participants’ ages are between 18 and 35. It can

also be inferred from the distribution on career and

familiarity of technology. Male and female participants are

evenly distributed. 59% of the participants are graduate

students, and 74% claims to be very familiar with

technology. So we can suggest that these are real potential

users of our online clothes recommendation system.

Regarding to shopping habits, more than half of the

participants claim that they have above average fashion

knowledge, and about 30% are very good with fashion. So

this fits our system’s objective, to make it useful for both

fashionista and common people.

Wardrobe Model:

User’s response to male wardrobe and female wardrobe

don’t differ much, so here we’ll use male wardrobe to

analyze the user response. Mean and Deviation of user

ratings of system under different conditions are shown in

the following table.

Condition Mean Deviation

Without Search 7.44 0.8464

With Search 7.61 1.2581

Static closet/ without customization 7.59 2.2219

Table 1: User responses concerning usability of different

Wardrobe Model conditions

By comparing the mean value, we can conclude that users

prefer wardrobe model with search function than one

without search. However, static closet has higher mean

value and larger deviation than dynamic closet without

search function. This suggests that users have diverse

opinions on static closet. 74% of users finds it more useful

if they’re able to search for more online clothes, even when

the search result is not optimized.

Advisor Mode:

Mean and Deviation of user ratings of system under

different conditions are shown in the following table.

Condition Mean Deviation

Full recommendation 7.39 2.7179

No context 6.95 4.6705

Random recommendation 7.21 2.3259

Table 2: User responses concerning usability of different

Advisor Mode conditions

By comparing the mean value, we may find that user

actually prefer random recommendations. One possible

explanation may be the limitation of clothing data, since we

extract our clothes from one website, therefore, even

random results don’t seem unreasonable. However, the

following pie chart shows that 65% of users find the system

with full recommendations more useful.

System Interaction:

Most users spend less than 5 minutes on interaction with

advisor mode, and they spend less than 6 minutes on

wardrobe mode. User’s rating for all these three parts of

our system are similarly distributed. Most responses lie

within the range of 3 to 5. More than 50% of users vote for

4 “above average”, and approximately 30% of users vote

for 5 “good”.

Many users commented that the interaction with the system

was easy - in particular, easy to navigate and search.

However, there were concerns that clothing choices is

limited. Users commented that the outfit recommendations

were helpful, looked good, and usually matching well.

Users found our profile input easy to use, and felt that our

system know them better after they finish the profile input

part. Some users however were annoyed that they had to

input information about themselves before using the

system.

Quality of Recommendations.

For the recommendations evaluation, we received 74 valid

responses. From these data, we ran the single-tail, mixed-

variance T-test, trying to figure out whether our

recommendation is better than random result. We have a

small effect size (0.17), but strong statistical significance (p

= 0.034860787 for mean-only comparison, and p =

0.006507725 for direct value comparison). Since p <= 0.05

is considered statistically significant, and less than p = 0.01

is considered very significant. It confirms that our users

liked the actually recommendations more than the random

recommendations, though only a very little bit more.

However, we are sure that they definitely liked our system

more. There is only a 0.65% chance that those preference

results were due to random error.

DISCUSSION

Firstly, most people found our system is helpful. Over, 67%

people think our system is useful to decide what to wear for

the day’s weather and events and your mood. And there are

still over 50% of participants think our system can provide

the help to be more stylish and expressive. Participants

liked advisor mode more than wardrobe mode. The reason

may be setting up wardrobe takes time. Responses for

different conditions in our evaluation tended toward high

scores (averaging about 7 overall), and we were surprised to

see that the difference between the conditions in the virtual

shopping mode and the outfit advisor mode were very small

(Tables 1 and 2). We attribute these differences to bias in

our study methodology and

For virtual wardrobe mode, one significant thing is

searching function is really useful. This function remains

me think of an instant messaging application called Tencent

QQ. This instant messaging software has a great function of

adding stickers from searching Internet. You can input the

description of the stickers you want and the search result

can be added into your own stickers gallery. I still

remember when this new function of searching stickers has

been put online, many of users of this software using this

function. The feedback of this function is really great.

That’s why we need searching function for our

recommendation system. User needs their ability of

changing default wardrobe.

We were surprised that the perceived difference between

randomly generated outfits and those produced by our

system were so low. We attribute this small effect size to a

low level of personalization in the prototype, and the fact

that the limited clothing dataset we used includes mostly

stylish clothing and it could be argued that almost any outfit

generated from it may look good. To improve on the quality

of the outfit recommendations, we need to have more

personalized information about the user - perhaps

information about fabrics, patterns and textures they like,

and more parseable information about style categories they

like. Additionally, metadata parsing of more information

sources would be needed to ensure that the clothing that

users actually want to see in their wardrobes can be

evaluated correctly by the recommendation system.

CONCLUSIONS

We’ve present GetDressed: an outfit recommendation

system that uses both contextual information and a user-

generated virtual wardrobe to provide actionable outfit

suggestions. We do this by filtering out the clothing items

that are inappropriate for the day’s weather and calendar

events, then scoring a set of outfit candidates with

evaluative metrics based on basic color harmony and

clothes matching rules, and outfit history to produce a small

set of recommended outfits. A key innovation of

GetDressed is that it uses an easy-to-use virtual shopping

mode to populate a wardrobe model for the user so that

outfit recommendations can be similar to clothing they

actually own, and therefore the recommendations are

actually attainable.

We determined in our evaluation of the system that many

users would find it helpful and that they find the virtual

wardrobe model as a practical and acceptable way to tell

GetDressed about the clothes they own without having to

spend a long time manually entering metadata themselves.

However, we also found that in order to make a bigger

impact on people’s lives, and in particular in order to to

produce more likeable outfit recommendations, we’d need

to improve the personalization options in GetDressed, and

be able to extract relevant clothing metadata from more

sources.

As a system investigating the use of contextual information

from multiple sources to produce personalized

recommendations, we believe GetDressed may be a

valuable contribution to the expert systems research

community. Additionally, we believe that the virtual

shopping mode method for building a metadata-rich

wardrobe model without demanding too much of the user is

a promising endeavor that could use further exploration.

Since most data sources do not provide relevant metadata

that could be useful to a system like GetDressed (clothing

color, material, patterns, texture, sleeve-length, etc.), we

believe that this could be an interesting problem for

computer vision research, particular from the fine-grained

visual categorization sub-community.

FUTURE WORK

Ideas for future work on GetDressed fall into three

categories: data extraction, personalization, and live

visualization. Automatic clothing metadata extraction from

different sources (in particular from search results) is

needed for need for the recommendation system to evaluate

the clothing that people want to see if. No one source will

be broad enough to cover every user’s needs, and many

sources do not have associated metadata for their catalog

items that could be useful to us. Additionally, using the

user’s mood as a contextual input of our recommendation

system is something that we purposefully backpedaled on

due to the added complications of understanding user intent

and producing computational rules for the effect of mood

on desired clothing style. This contextual source and other

potential ones (e.g. social influence) would also require a

deeper understanding of psychology and sociology than we

have available to us at present.

The personalization and customization functions in our

system have significant room for improvement. For

example, users can recombine the outfits if they don’t like

the existing recommendations. And additional information

about the user can be leveraged in the outfit advisor - such

as their thoughts on different fabrics, patterns and textures,

as well as more granular information style categories they

like.

Finally, providing a live visualization of a recommended

outfit is something that we thing would be very valuable to

users and could significantly augment the power of our

system to allow users to try out different outfit

combinations and shop for new clothes. Such live

visualization of outfits would be displayed superimposed on

users’ bodies using visual body tracking, such as that made

possible by the Microsoft Kinect and other systems.

ACKNOWLEDGEMENTS
We would like to thank Rhema Linder, Andruid Kerne, and

Nic Lupfer for their helpful comments and suggestions

throughout the design and development of GetDressed.

REFERENCES

1. Campos, P. G. et al. “Context-Aware Movie

Recommendations: An Empirical Comparison of Pre-

Filtering, Post-Filtering and Contextual Modeling

Approaches.” E-Commerce and Web Technologies.

Springer Berlin Heidelberg. 2013.

2. Chakravarty, P. and Jain, A. "Calendar based

personalized recommendations." U.S. Patent Application

12/147,597. 2008.

3. Chen, A. “Context-aware collaborative filtering

system: predicting the user’s preference in the ubiquitous

computing environment.” International Workshop on

Location- and Context-Awareness. Springer Berlin

Heidelberg. 2005.

4. Cheng, C. M. et al. "Chromirror: a real-time interactive

mirror for chromatic and color-harmonic dressing." CHI'08

Extended Abstracts on Human Factors in Computing

Systems. ACM, 2008.

5. Giovanni, S. et al. "Virtual Try-on using Kinect and

HD camera." Motion in Games. Springer Berlin

Heidelberg, 2012.

6. Hong, J. et al "Context-aware system for proactive

personalized service based on context history." Expert

Systems with Applications 36.4. 2009.

7. Kim, D. et al. “A scoring model for clothes matching

using color harmony and texture analysis.” Graphics

Recognition. New Trends and Challenges. Springer Berlin

Heidelberg. 2013.

8. Liu, S. et al. "Hi, magic closet, tell me what to wear!"

Proceedings of the 20th ACM international conference on

Multimedia. ACM. 2012.

9. Moon, P. and Spencer, D. E. “Aesthetic measure

applied to color harmony.” Journal of the Optical Society of

America, 34(4), 234-242. 1944.

10. Ou, L. C and Luo, M. R. “A colour harmony model for

two‐colour combinations.” Color Research & Application

31.3. 2006.

11. Pereira, F. et al. "Virtual Fitting Room Augmented

Reality Techniques for e-Commerce." ENTERprise

Information Systems. Springer Berlin Heidelberg, 2011.

12. Shen, E. et al. "What am I gonna wear?: scenario-

oriented recommendation." Proceedings of the 12th

international conference on intelligent user interfaces.

ACM. 2007.

13. Zhang, Q. et al. ”A color harmony measure model with

shape information.” International Joint Conference on

Computational Sciences and Optimization. IEEE. 2009.

14. Zhang, W. et al. “An intelligent fitting room using

multi-camera perception.” In Proceedings of the 13th

international conference on Intelligent user interfaces.

ACM. 2008.

15. Zhou, Z. et al. "Image-based clothes animation for

virtual fitting." SIGGRAPH Asia 2012 Technical Briefs.

ACM, 2012.

