‘a;@_s’ Queen Mary

University of London

Undergraduate Project Report
2012/13

Low resource autonomous object-seeking
robot using computer vision

Name: Liu Zhijiao
Programme: QCAH3

Class: 2009215109

QM Student No. 090466298

BUPT Student No. 09212987
Supervisor: Christopher Harte

Date 2013.5.13

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Table of Contents

TabIE O CONENLS ..ottt et b ettt e bt et s bt e bt et s et e nbeentesaeebeeaee e 1
YN 0] 1 v To] AP 3
Chapter 1: INIrOUCTIONeeiiiiiieiiecie ettt et e e et e s e e beessaeebeesabeenseessneenseensseenne 5
| 1Y (o) 3 A2 3 o) SRR 5
L2 PUIPOSE ..ttt ettt ettt ettt et e e st e e st e e e at e e st e e easteeensbeesnsseeensbeesnsaeesnsaeennneeennnes 5
1.3 Realised fUnCIONAITEIESc..eeeeuvieeiiieciiie ettt et e e sre e e e e e e e e raeeenraeesaraeenans 5
L4 STIUCTUTE ...ttt st ettt e sttt et e e sate et esbeesaneenaneens 6
Chapter 2: BaCKroundoooviiiiiiiiii ettt ettt e s ae e s e e saeeeesbaeeesseeessseeessseeennneeens 7
2.1 HATAWATE ...ttt et e sttt e s et e et esbeesbeesaeeenbeesnneenbeesneeens 7
2.1.1 STM32 Core BOArdocoviiiiieiieeiieiiecee ettt ettt et ae b e esaesene e 7
2.1.2 0V7670 Camera MOdUIC..........cccouiieiiieeiiie ettt 9
2.1.3 Ultrasonic MOAUIEcc.coruiiiiiiiiieieceee ettt 11
2.1.4 MOtOT MOQUIC........oiiiiiieiiie e et s e e save e e eareeenns 12
2.2 SOTEWATE .ttt ettt ettt ettt e bt et e b e st e aee 14
2.2.1 Kl UVISION VA. 14 ..ottt e aae e eaa e e saae e e sabaeenns 14
222 PYHNON 2.7 oottt ettt et ettt enbeesaeeeabe e saeennaas 15
2.2.3 MATLAB R20TID c.eeiiiiiieieeeesee ettt ettt 16
2.3 COMPULET VISION...ceuiiiiieiiiieiieiieeiteeeteesteeseteesseessteeseessseesseeasseesseesnseenseessseesseesseessseesseensns 16
2.3.1 EAE DEIECHIONeeiiieiieeiiieiie ettt ettt ettt ettt et e st e e eneeas 17
2.3.2 Colour ClasSIfICAtIONccviereieeiieriieeteerte ettt et streeae e e e beeseseesseesaseesseessneenneas 17
Chapter 3: Design and Implementationcoocieiiieiieiiienie e 19
3.1 The Whole System and Environment............ccceecvueeeiierieeiiienieeiieenie e e eseeeveeseve e 19
3.1.1 Design the Whole SYStEIMccueiiiriiriiiiiiciecieeeccee e 19
3.1.2 Environment Design and ConsStruCtion...........ceccveeerieeerieeerieeerieeeiieeeieeeeveeesneees 20
3.2 Basic Communication between Board and PC ..., 21
B2 L UART ettt et st a et et b et e et e bt et entenbeeneeneen 21
3. 2.2 USART ettt ettt sttt s et e e e st e ensessaesseenseensenseenseennens 21
3.3 TMAZE CAPLULE ...eeeeneeieeiiie ettt ettt ete et e et e e stte e et eeesbaeesaeeensaeeenseaeansneeanseeennseennns 22
3.3.1 Get ONE fraAME IMAZE. ... ceeuveeiieeiieeiieeiie ettt ettt et e ee et e st e ebeesabeebeesneeenbeesneeens 22
3.3.2 Show the captured IMAZE........ccccvvieriiieeiiieeiieeeriee et ete e tre e aee e saaeeenreeeeanee s 25
3.4 TMAZE PrOCESSING. ... eeviiuiiriiiiiiieeiteie ettt ettt et ettt et et sbeesaeeatesaeens 27
3.4.1 EAQE detECIONeeeeiieeeiieecie ettt e et e et e st e e e e e e e e ennee s 27
3.4.2 Colour classifiCatioNeevuieriieriieiieeiie ettt et 32
3.5 Ultrasonic DiStance MeEaSUICMENT..........cevuvreriieeriieeiieeerieeeseeeesereeesreesseeessseeessseeessseenns 39
3.5.1 Distance calculation.........c.eecuieriieriieiiieiie ettt ettt 39
3.5.2 Implement the MEASUTEMENL..........cccceeeriiieeiiieeiiee ettt ere e eaee e reeeeveeeeanee s 40
300 IMIOTION ..ttt et h et st b e bt e a e b et et sb e bt et h e nbe et e saeen 40
3.6.1 Detect the SPEE.....cccuviieiiiieiieecie et ettt tre e et e e s tee e e e ennee s 40
3.6.2 MOVE ANd tUIML...c.uiiiiiiiiiiiieieeeet ettt st st sbe e 41
R TR AN 103 5 1111 o RSP SRPPSUURRRR 42
3.7.1 Object-seeking al@Orithmcccoeviiiiiiiiiiiiiieie e 43
3.7.2 Return path calculation............ocoueieriiiiiiiie e 43
Chapter 4: Results and DIiSCUSSION........ccccuiiriieriieiieiie ettt ettt ettt e site b e saeebeesaaeenseesnnas 45
Chapter 5: Conclusion and Further WOorkcocvioiiiiiiiiiieeeeee e e 46
RETETEICES ...ttt sttt et et st s bttt et sbe e b 48
ACKNOWIEAZEMENTeeiiiiieiie et e e e et e e s e e s sbeeessbeeesaseeessseeennseeenseesnnes 49

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Abstract

Building a robot with low resource is the main mission of this project. Based on the required
functions, the robot needs to see the world, distinguish the colours, avoid obstacles, move to the
target object, and bring it back to the start point. To fulfil the tasks, the implementation mainly
contains three parts, robot’s body, vision and movement.

Several low cost electrical components are used to build the robot body. STM32 microcontroller
serves as the brain of the robot to do the control and calculation work, and the OV7670 camera
module works like the eyes of human beings. The body of the robot are also made up of ultrasonic
module, motor module and the connection.

Using OV7670 to accomplish the vision part and see the world requires the board not only gets the
data from the camera, but also do the edge detection and colour classification. In this part, it
contains the learning and implementation of some basic machine learning theories to help the robot
to distinguish the environment.

For the movement part, the robot can move with required distance and certain turning angle, and it
also can avoid the obstacles on its way. The previous function is achieved by the programming of
the motor module. The collision avoidance is realised by the ultrasonic module.

Most of the programming work is done with C, Python and MATLAB.

This robot fulfils the majority requirements of the project, while the bringing back mission hasn’t
been finished because of the practical problems.

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

i 2

ATH B BARSE AR SA ORI ENLEE N . BT 7k, LS AR 2R B A ST, 2 H e Hh i,
PRBEEASY), SR BRI ERI R AR, AT SEEIX TS, TH ST K = E A, HLEs AR R, A
BAATE .

HLAS NIRRT — Sl A FLF e A . STM32da il B34 AL 28 A ARG = 22 fn s 4 i A H B A A
OV7670FEAZ I AL TS U N HR — FEEE T LB AALAE o BLAS N HRAA HH 7 75 el PR AR e . F WA B A 28 40 i
2 FHOVT670K 58 BRALFE I 70 A B SRAZ oA BE 05 MBS SR BRGS0 340 75 2L 58 iy) A 3 62, 73 25 110
hft. XA A4S T X SR S FAS A2 ST RIS, LIS BHLAS A 43 9 R L 3R 55

S TATENIXER S, Ml N nT DURYE 4 e (B S A 478, TR e AR iR & OB iS 9 . AT — AN hRE 2t
o FATUBEER () A2 1T SRR, i — AN B 8 T A U 2 7 7 g) AR R S L1 o

AT H K2 BomFE TAEHC, PythonFIMATLABSE Ji% o

PEALES ANSEIL T 100 H ZoR IR 2 E0ThRE, B T SEbRAA s in i, Bl B AR AT 55 1R 5E

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Chapter 1: Introduction

1.1 Motivation

Artificial Intelligence (Al) and Machine Learning become more and more popular and widely used
in different areas in these years, especially as the electronic components’ price steadily dropping
down and the prosperity of robotic research. Al algorithms used in the industry deal with enormous
amounts of data to serve to the research and commercial demands. However, implementing Al into
limited resource robot project requires finding the balance between processing rate and accuracy,
which is a meaningful project to understand the Al algorithms and implement the machine learning

theories in practical.

1.2 Purpose

The main purpose of this project is to learn and apply the operating principles of different
components, computer vision and machine learning theories to implement them to build an
autonomous target-seeking robot. This robot should not only find the target object with the OV7670
camera, but also can move towards to the object and bring it back to the start position. It is a
combination of hardware and software. Programming, simulation and testing are the most
significant parts of this project. What’s more, implementing machine learning on this robot can help
people get a better understanding of the edge detection and color classification, and get familiar

with computer vision.

1.3 Realised functionalities

The robot achieves to see the world and move according to the requirements. In the vision part, two
processes are finished. One is the STM32 core board sends signal to the OV7670 camera to trigger
it to collect image data. The other is the color detection process, which requires the core board
accomplishing the edge detection with Laplace operator and color classification with Naive Bayes
classifier. In the movement part, three steps are needed. Firstly, the cooperation of ultrasonic
module and motor module ensures the robot can realize the basic movement, like moving forward,
backward, turning left, right, and avoiding obstacles. Secondly, based on the results of the image
processing, the robot will adjust its moving direction to move towards to the target object. Thirdly,
after the robot find the target and collect it, it will calculate the return path and try to bring the
collected object back to the starting point.

The program running on the robot is written in C with KEIL 4.14. The captured image and color

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

classification are processed in MATLAB to show the edges of the colors and train the data set to get
the relevant probabilities. Demonstration and simulation mostly use Python to show the captured

image composed by RGB pixels and fulfil the showing of the algorithms.

1.4 Structure
Chapter 1 introduces the motivation, the purpose, and the realized functions of this project and the

structure of this report.

Chapter 2 gives the background knowledge and fundamental theories mentioned in this project. It
contains three parts, hardware, software, and computer vision. Firstly, it presents brief introductions
of STM32 core board, OV7670 camera, ultrasonic module and motor module used on the robot
from architecture, working principle etc. aspects. Secondly, the mainly used softwares are
introduced, KEIL 4.14 for STM32 programming, Python 2.7 for display and MATLAB for data
processing. At the end of this chapter, the core methods used for computer vision in this project are

presented, which are edge detection and colour classification.

Chapter 3 shows 6 steps of the whole design and implementation process. The basic communication
between STM32 core board and PC is built at first through the serial. Then come to the image
capture step. The signal sent from the PC triggers the board to collect one frame image data from
the OV7670 camera and send those data to the PC. A Python program will use those data to output
the one frame image. After that is the image processing step. This step focuses on the
implementation of edge detection and colour classification to help the robot to distinguish the world
by different colors. The next two steps are about using ultrasonic module to measure the distance
and controlling the motor to ensure the robot can run and turn. The last one is the algorithm. Here

introduces two main algorithms for object-seeking and return path calculation.
Chapter 4 indicates and discusses the specific results in this project, especially those testing results.

Chapter 5 concludes all the work and mentions the future work for further improvement.

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Chapter 2: Background

This chapter includes three aspects of the background used in this project, which are hardware,
software and computer vision. All the needed information of boards and modules is in the hardware
aspect. Then the three mainly used softwares, KEIL, Python, and MATLAB, are briefly introduced
here. The last aspect, computer vision, provides more significant background information of edge

detection and colour classification.

2.1 Hardware

2.1.1 STM32 Core Board

Figure 1: STM32F103ZET6

STM32F103ZET6 is used in this project(shown in Figure 1), which incorporates the Cortex-M3 32-
bit core operating at 72 MHz, 512 Kbytes Flash, 64 Kbytes SRAM and 144 Pins for I/Os and
peripherals. This board offers four 16-bit timers, two 12Cs, five USARTs, an USB, and other

standard and advanced communication interfaces. [2]

Architecture

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

TRACECLK ™|
;R:gED[O:a TPIU @VDD
E ITrace/tri Trace
NJTRST WATAG 9K Pous m Vpp+ __ Power
3 Tt TS
E 10 1.
JTCK/SWOLK Flash 512 Kbytes
JTMS/SWDIO Cortex-M3 CPU 4 bit o
JTDO DDA
as AF F o 468/72 MHz Supply
- max POR supervision NRST
Kevsieny| £ p—y Roset +||_PORPDR VDDA
g/ @ SSA
NvIC Rh— wke | Shoa o [Ao |
Y 3 RC 8 MHz
- GP DMAT
y ® —1{RC 40 kHz}—
3[?2331 7 channels z av OSC_IN
[GLI(J " | P O8C_OUT
NOE GP DMA2 <:> z ¥
NWE 5 channels L/ o :rl> Reset & (P PCLK1 IWDG
NE[4:1] § Clock [P PCLK2 _ Standby
NBL[1:q] I control [PHCLK interface «—VBAT=18V1036V
NWAIT [« T——""~={ FSMC] > FCLK
NL (or NADV) E 0SC32_IN
as AF & 0SC32_0UT
— - TAMPER-RTC/
Dg’:l(g < ™~ spio : ALARM/SECOND OUT
CKas AF_| ATz
APB1 4 channels, ETR as AF

RX, TX CTS, RTS,
CK as AF
RX, TX CTS,RTS,
CK as AF

GPIO port E

APBT: Fonay = 24/36 MHZ

PF[15:0] <> GPIOport F

MOSI/SD, MISO

4 channels V| _SPI/ 1282 K> SGIICK, MCK, NSS/WS as AF
3 gompl. channels [spia/iess | MOSISD, MISO
BKIN, ETR as AF <] _SPI3/1283 K> SEGICK MOK, NSSWS as AF
4 channels
3 compl. channels = = SOL, SDA, SMBA as AF
BKIN, ETR as AF
MOSI, MISO, sRAMs12B K= K= 12c2 SCL, SDA, SMBA as AF
SCK, NSS as AF
—_— bxCAN device
Egr('S,T)c(:kcaLSAF <:>|:¢ USBDP/CAN_TX
— | US320FS USBDM/CAN_ X
BVICO
Eemp. senso 4-|
8 ADC123_INs 2Dt ADC1 |IF TIM8 = [K= [zt oac » DAC_OUT1 as AF
comman to the 3 ADCs ¥ =<:> IF DAC OUT? s AF
8 ADGC12_INs common . > € ":: > 12bt DAC 2 > . as
to ADC1 & ADC2 12+bit ADC2 | IF K — > |
§ADC3_INs on ADC3 12+bit ADCS | IF (<> @Vppa
v L]
v::"J | r @ Vppa
)
ai14666f

Figure 2: Circuit diagram of STM32F103xE

The circuit diagram of STM32F103xE, shown in Figure 2, shows the whole architecture of this core
board. Besides the 72MHz Cortex-M3 CPU and 512 Kbytes Flash, there are many useful parts for
this project, such as GPIO, FSMC, NVIC, JTAG, UART, etc. [3]

GPIO (General Purpose Input Output) are generic pins on the board. Users can control these input

and output pins at run time. They are not defined with special purpose, which is useful to not only

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision
define the input output ports but also may work as other pins with specific functions.

FSMC (Flexible Static Memory Controller) is a specific storing controlling mechanism of STM32
series suffix with xC, xD and xE, whose Flash is more than 256 Kbytes. Flexible means that

FSMC can response corresponding controlling signal to meet the requirements of signal speed by

setting the register with special functions.

JTAG (Joint Test Action Group) is mainly used for debug, which offers the operations like break
pointing and single stepping debug.

NVIC (Nested Vectored Interrupt Controller) handles low-latency exception and interrupt. It
supports 240 dynamically reprioritizable interrupts. Each of them has 256 levels of priority. The
NVIC and the Cortex-M3 CPU are closely coupled. That helps to improve the processing efficiency

of low-latency interrupt and late arriving interrupt. It supports stacked (nested) interrupts as well.

UART (Universal Asynchronous Receiver/Transmitter) is commonly used in microcontrollers as an

integrated circuit used for serial communications between a computer and peripheral devices.
STM32F10x Standard Peripherals Library

The STM32F10x Standard Peripherals Library contains the drivers for all of the standard
peripherals. This library is a complete firmware package with a collection of routines, data
structures and macros covering the features of STM32 peripherals. Description and examples are
included in this library, which helps users to quick start without in-depth learning of each
peripheral’s specifications. It can save coding time and reduce the costs of application development

and integration. [4]

2.1.2 OV7670 Camera Module

edv.com ¢

i, .

SRR
ALIENTEK
0U7670 MD U2.2

Figure 3: 2.1.2 OV7670 Camera Module

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

OV7670 Camera, produced by with AL422B FIFO does the job of collecting data in this project. It
can operate at 30 frames per second (fps) in VGA. Users can control the image quality, data format,
etc. With low noise, low cost, low power consumption, high integration, wide dynamic range and
good low-light performance, OV7670 is not only cheap, but also powerful, which is fit the title —

low resource.

Functional block diagram

column G
sense amp buffer | | buffer
- analog R
(8] -
% image processing
wn
array B image video
2 g .
o scaler FIFO port D[7:0l
exposure/ 50/60 Hz test pattern
gain detect auto detect generator
registers
I 1 I |
lock video timing exposure/gain SCCB
clec generator control interface
A | [\ A
f Y Y
hod w b = O %% = O, D.
3 8 & 8 £ 4 S o o
= ¥ T @ i v FT non
» > @

Figure 4: OV7670 functional block diagram

SCCB (Serial Camera Control Bus) is defined by OmniVision Technologies, Inc. for controlling
most of the functions in OmniVisions family of CAMERACHIPTM sensors. In OV7670, the SCCB

operates in a modified 2-wire serial mode. SCCB also can be set up to configure the registers.

master device

iU

[[
LS L |

slave device

¥y

A

Figure 5: SCCB - Master and Slave

The 2-wire serial mode allows a master device to interact only one slave device shown in Figure 5.

10

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

This requires one of the following two master control methods in order to enable the SCCB
communication. Number one, the master device must be able to maintain a tri-state data line.
Number two, if the master cannot maintain a tri-state data line, it can drive the data line either high

or low and note the transition to assert communications with the slave CAMERACHIP sensor.

DSP (Digital Signal Processor) works as a colour space converter that controls the interpolation
from raw data to RGB or YUV. It also supports white/black correction, which relates to white
balance. White balance technology is helpful to display or recover the real color of white area no
matter the light source. This function of DSP solves the problem of low-light or high-light

environment to ensure that the following color detection step could be implemented correctly.

2.1.3 Ultrasonic Module

Figure 6: HC-SR04 Ultrasonic Module

HC-SR04 (Figure 6) is a stable and accurate ultrasonic module. It is widely used in robotic, obstacle
avoidance, distance measurement, parking detection, etc. It is powered by DC 5V. Its detecting
range can reach 450cm and its accuracy can be 0.2cm. There are four pins on it, as VCC, Trig, Echo,
and GND. Use Trig pin with at least 10us high level signal to trigger the detection. Then the module
automatically sends eight 40Hz square waves and checks whether there is a response signal. If there
is a return signal back to the module, that will cause a high level on the Echo pin. The high level
lasting time is the time between the sending and receiving. The sequence chart of the whole process

is shown in Figure 7.

11

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

[0us TTL

Trg I

Continue sending e1ght 40Hz s1gnal

Internal
module
sending
signal Response

Echo

Figure 7: HC-SR04 sequence chart

2.1.4 Motor Module

Figure 8: L298N driver board, motor, and wheel

L298N driver board is manufactured by STMicroelectronics. Users can use standard TTL logic
levels to control this dual full-bridge driver board to drive DC and stepping motors. Two inputs are
provided to enable or disable the relevant outputs independently. The outputs usually connect with
motors’ two pins to control them reversing or not. Its works with +5V to +35V and it also can

provide +5V to +7V to support the logic part and external device, such as the core board and other

12

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

modules.

+¥g5

+ ¥

ouTS
Q

°L
=T

Vret

e an@in

in1 né
o o3 Y
(T

in2 In3
e |

EnA EnB
1

[: 0

L]

SENSE AO——¢

-[I]-ns.

-l

Figure 9: 1298 Block Diagram

As it is shown in Figure 9, L298N uses Two H Bridges to control the output voltage.

An H bridge (in the red block) enables a voltage that can be applied across a load in either direction.

This circuit is commonly used in robotics and other applications to ensure DC motors to run
forwards and backwards. IN1 and IN2 control one wheel, and the other two INs control the other
wheel. The high/low levels of different inputs will cause different performance of the motors. For

example, IN1 and IN2 control wheel A. If IN1 is high level and IN2 is low level, the wheel will run

forwards, and if IN2 is high and IN1 is low, the wheel will run backwards. When IN1 and IN3 are

high level, the motor will run forwards. When IN2 and IN4 are high level, the motor will run

backwards. As there are four inputs, this driver board can control 2 wheels simultaneously.

13

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

2.2 Software

2.2.1 Keil uVision v4.14

DA\ ! Document\@FP\Code\lmgCap\3.camera\USER\OVT670:uvpro S pVicond. T s SNNCE X
File Edit View Project Flash Debug Peripherals Tools 5VCS Window Help
IR Y e | & = I i| @ cropns Ha#@ oo e|EF])
& [E @5 ¥4 | rarget1 [«] &% | &
Project 7 B main.c motor.c > X
~ ||l 5 Z'
A77 for (i=0;i<9;i++){
E7g /S delay ms (1000) ;
.5?9 R = focus_red(};
i 580 delay ms(100);
3 581 for (3=0:3<2:3++) {
hg2 camera_refresh();
583 detect_edge ()
584 classify colors(): o
hgh R = focus_red():
core_cm3.c il 586 delay_ms(500);

H = P o 5 ? :_ -
=] Project @B-:--:-I':- {} Funct...| O Templ Al L4
Build Output a @
compiling main.c... -

linking. ..

Program Size: Code=27246 RO-data=1178 RW-data=984 ZI-data=6488
FromELF: creating hex file...

" NOBJNOVTETO.axf" - 0 Error(s), 0 Warning(s).

Pl 3

Cortex-M/R J-LINK/)-Trace L:591 Ci18

Figure 10: Keil uVision v4.14

Keil was founded in 1982 and implemented the first C compiler for the 8051 microcontroller. It
provides a extensive range of development tools like ANSI C compiler, macro assemblers,
debuggers and simulators, linkers, IDE, library managers, real-time operating systems and

evaluation boards for 8051, ARM, etc.

The pVision IDE from Keil provides a powerful development environment that combines coding,
program debugging, simulating, compiling, and project management in one program. This platform
is easy to use and can help users quick start to create embedded programs. The pVision editor and
debugger are also integrated in one single program that offers all-in-one embedded project

development environment.

14

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

2.2.2 Python 2.7

%4 Python Shell =B %

File Edit Shell Debug Options Windows Help

Python 2.7.3 (default, Apr 10 2012, 23:31:26) [MSC v.1500 32 kit (Intel)] on win =
3z

Type "copyright"™, "credits™ or "license ()" for more information.
>>>
¢
74 ObjectSeeking.py - Di\ ! Document\@FP\Code\ObjectSeeking\ObjectSecking.py SRR X
File Edit Format Run Options Windows Help
—*- coding: cp836 -*- -
pygame, pygame . key
pygame . locals =
pvgame . sprite Sprite
usb.core

sys,o08, commands
subprocess
string

random

usb.util
usb.backend

robot_images = ["robot_0.png","robot_315.png", "robot_270.png", "robot_225.png",

RobotSprite (pygame.sprite.Sprite):
_ dnit_ (self):

pygame.sprite.Sprite._ init__ (self) |
self.image = pygame.image.load("rokot 0.

self.rect = self.image.get_rect()

gelf.rect.center = [startX, start¥]

self.angle = 0 ﬂ

Ln: 3|Col: 0

Figure 11: Python 2.7.3 in Windows 7

Python is a widely used multi-platform high-level programming language. Its syntax helps the
programmers to accomplish similar functions with fewer lines of code than would that in C or other
languages. Python, as a dynamic type system, manages the memory automatically, and has a great
and wide-ranging standard library. This dynamic language, Python, often works as a scripting
language and non-scripting contexts. With third-party tools, the code can be wrapped into separate
executable programs. Python interpreters can work on different operating systems, Windows, Linux,

MAC, etc. [5]
PyGame

PyGame is a cross-platform module of Python, which is mainly used for writing video games. It
contains graphics libraries and sound libraries to improve the game programming. [6] PyGame is
built on the Simple Direct Media Layer (SDL) library, which allows real-time development rather
than those mechanisms in C. Most complicated functions in games are mainly related to the graphic
parts. While in Python, it assumes that those can be distracted from the game logic, and use high-
level languages to build the game. PyGame is portable and can works on almost every kind of

operating systems. What’s more, PyGame is free and open source.

15

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

2.2.3 MATLAB R2011b

File Edit Debug Parallel Desktop Window Help File Edit Text Go Cell Tools Debug Desktop Window Help ERE 4
S| & @9 o & B | @ || orrogram Files\MATLAB\R2011b\bin FdE [fFfcE| iR e (S -Aenm k-2 RRE BA > .
Shorteuts] How to Add 7] What's New =258 -0 |+ | #[11 |x |[EE| O
Sugapfoldey v 0 » x| CommandWindowi i NERR] Workspace = 01 # x [l ss - Tend B
- . - ==0) =
« bin » - - | @ New to MATLAB? Watch this Video, see Den| (8| Sel.. + & edges (edges==0) = [1;
| « bin 2 2 =
S os | Name a1 - [lfor 1 =1:2;
N. Date M... *
= = 92 - [/for j = 2:length(edges)
= Last Week = o3 - if ((edges(j)-edzes(j—1))<10)
H camera.... 201372714 ... 94 - edges (7)=0;
H grg-wrw...2013/4/14 ... 95 - end
H robot wr...2013/4/14 ... 95 - end
] received... 2013/4/17 ... 97 - | edgesiedges==0) = [l
= Older :2 - end
Utﬂ 100 - figure (1)
mairegis... 101 - plotlr, r');
registry 102 - hold on
win32 103 - plotlg,’ g):
learning_...2012/ 106 - plot(h,"b);
4] insttype.ni 201074716 ... q . 105 - [Jfor i = 1:length(edges)
8] ledata.xsd 2010/4/16 ...)= plot (edges (i), riedges(i)), ko'):
|| license.nxt 201074716 .. Command.. » O » x 123 B ;“;‘d it
— el Py - old o
[matlab.b... 2010/4/16 ... iedge_detection e
] mbuild.b...2010/4/16 ... “robot_wrw_with_ 10 - figure(?)
[mexbat 2010/4/16 .. % 2013/4/22 17: 11 - plet(r_diff, r'):
[Product... 2010/4/16 ... " robot_wrw with. 112 - hold en
[E) mexext.b...2010/4/16 ... Er%-- 2013/4/22 17: Iz
|| msve_m.. 2010/4/16 ... " edge_detection Ed= p1°t(g-d?ff’jg::‘
[mw_mpi... 2010/4/16 ... e 2013/4/22 21: 15 - plot (b diff,"b"),
= ledata.xml 2010/5/3 1... I 116 - for 1 = l:length(edges) £
= E%-- 2013/4/24 17: u7 - plot (edges (i), r_diff (edges (1)), ko)
[mecbat 2010/5/14 ... ‘o rebot_wrw_with, et end
worker.b...2010/11/6 ... B-%— 2013/4/25 11: 119 - hold off
[deployto...2011/1/7 1.. “robot_wrw_with, 120
=] ledata_ut... 2011/4/23 ... 6-— 2013/4/25 14: 121 - figure(3) E
|| mexsetu... 2011/5/13 ... 122 %naxRCE_diff? = diff (naxRGB_diff):
[mexpl 2011711 .. = I 123 - plot (maeReE_diff, n'):
P = 12¢ - hold on
ctalls 195 - For i = 1:lensth(sdses) 2
ma Start| Ready OVR script ln 33 Col 16 |OVR

Figure 12: MATLAB R2011b

MATLAB (matrix laboratory) is a powerful numerical computing environment, developed by
MathWorks. As a 4th generation programming language, MATLAB allows users to manipulate
matrixes, plot functions and data, create user interfaces, implement a wide range of algorithms, and
interface with the programs written in other languages. While MATLAB works basically for
numerical computing, optional toolboxes, like MuPAD symbolic engine, Simulink, etc., improve

symbolic computing capabilities and graphical multi-domain simulations.

2.3 Computer Vision

Computer vision is a front area that tries to replicate the capabilities of human vision to the
electronics by distinguishing and understanding the images. This field contains the research and
development of obtaining, processing, analyzing, and understanding images. That will output
numerical information or data to help the electronics to learn the environment and make decisions.
With the help of statistics, learning theory and the knowledge in other areas, this image
understanding process can handle numerical information from image data to construct learning and

training models. [7]

It is widely used and implemented in artificial intelligence and robotic. There is a huge overlap

between computer vision and machine vision. Computer vision covers the essential technologies

16

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

that automatically analyze image data, while Machine vision, combining automatic image analysis
with other methods of machine learning, concerns the process of guiding the robot, which is more

commonly applied in industry.

2.3.1 Edge Detection

Edge detection refers to those mathematical approaches to identify the discontinue points in a
digital images. These points map the sharply changed brightness in the image to sudden change of
color components. Edge detection is vital in image processing, machine vision and computer vision,

especially used for feature detection and feature extraction.

The methods of edge detection can be roughly categorized into search-based and zero-crossing
based. The search-based methods use the measurement of edge strength to detect edges. Firstly, get
the first-order derivative, and then look for local directional maxima of the first-order derivative to
estimate the edge’s local orientation. The zero-crossing based methods use zero-crossing points in a

second-order derivative to search for edges, regularly with the Laplacian.
The Laplacian A of/ is defined as,
A =V*f=V.Vf 1)

It also can be expressed as the sum of all the unmixed second partial derivatives in the Cartesian

coordinate,

n aZf
Af = 2
/=250 @)
In one-dimension, it will be simplified as,
df
Af = 3)

dx’

Generally, after compute the first-order derivative, apply a threshold to filter the image points with
low values. The higher the threshold is, the less the edges will be found, and that will improve the
ability of being less vulnerable to noise and other unrelated terms in the image. While a high

threshold may fail to detect subtle edges that only with a little change in brightness. [§]

2.3.2 Colour classification

In machine learning, classification is the process of deciding an input value belongs to which kind

17

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

of categories based on training data containing known category. The individual inputs are evaluated
by certain quantifiable properties, such as "Red", "Green", "White" "Black" or others, for colour
type. Classification works as supervised learning process, i.e. learning from the correctly-identified
instances. In actual implementation, it is named as "classifier" that maps input data to a given class

based on the mathematical function.

Bayesian approach is common-used in classification, which calculates the probability of one
belongs to each kind of the given categories to accomplish the classification. [9] To implement this

approach, a bulky training data set is needed. The core function of this approach is Bayes' theorem:

For events A and B, where P(B) #+ 0,

P(B| A4)-P(4
P(4|B)= M (4)
P(B)
Which also infers that posterior is proportional to prior times likelihood:
P(A|B) < P(B| A)-P(A) %)

18

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Chapter 3: Design and Implementation

3.1 The Whole System and Environment

3.1.1 Design the whole system

Before design and implement each module of the robot, the structure of the whole system should be

designed at first.

In the real world, the surrounding consists of 3D objects, while, as the specification mentions, the

low resource robot cannot reach that accuracy like human vision. What’s more, the real world

contains infinite information. That is impossible to process such huge data only with a small single

cheap microcontroller. To meet the requirements and make the project implementable, using 2D

instead is a better solution, and now the robot can handle the data and algorithms with its limited

memory.

According to the 4 tasks in the specification, there are two parts of this project, computer-based and

robot-based. The structure of the whole system is shown in Figure 13.

Computer-based Robot-based
. STM32 Core board
Display - Control other modules
Image data analvsis
Edge detection and colour classification
Searching process A
simulation
* \ v
Distance
Training for colour detection
classification Image data Movement of
: collection S the robot
Collision
avordance
Camera Ultrasonic Motor

Figure 13: The structure of the whole system

19

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

3.1.2 Environment Design and Construction

The task is that finding the target and collecting it back to the starting position. What is the target
for the robot? How can it distinguish the target from the background? To answer these two
questions, different colours representing different objects in the environment will simply the task.
Four colours are used to represent different things. Red is target’s colour, and black is obstacle. The
background is full of green and white colour block. The imitator of the environment is shown in

Figure 14, and the environment in the real world is shown in Figure 15.

Figure 14: The imitator of the environment

Figure 15: The real environment

20

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

3.2 Basic Communication between Board and PC

3.2.1 UART

Because the core board needs to send the image data to PC, the basic communication is important. I
use UART to accomplish this task. UART sends data through the serial of the computer. As the
simple code shows (in Figure 16), it just needs to initialize the delay function and uart function to
accomplish the task that the computer always listens to the specific com port and receives the data
sent from the core board. Figure 17 shows the result of this basic communication between computer

and core board.

delay init(}:

the delay function

uart init(2600); the uart with the speed of 9600
while(l)
i

printf ("Hello World!\n"):

printf ("STH32 iz good!'\n

printf ("by Zhijiac\n\n");

delay ms(300) ;

Figure 16: The code of sending data with UART

by Zhijian

Figure 17: Computer receives the info from UART

3.2.2 USART
USART is another way to send data through the serial. As different from UART, it can not only send
but also receive data from the computer. Besides delay and uart, it needs to configure NVIC to

control the interrupts that maintain the output of those info send from the computer. The code in

21

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

main.c is shown in Figure 18, and the output is in Figure 19.

delay init(}):
NVIC Configuration():
uvart_init (9600);

lize the delay function

while (1)

{
if (USART RX STR&0xE000)
{

len=USART_RX STR&Ox3f:
printf ("You are sendin
for (t=0;t<len;t++)

{
USART SendData (USART1, USART BX BUF[t])://send data to E
while (USART GetFlagStatus (USART1,USART FLAG TC) !'=B5ET);//wait till the sending 1s finished
printf ("\r\n");
USART_RX S5TA=0:
telse

{
printf ("Please input data ended with enter.\n");

delay ms(1000);

Figure 18: The code of sending and receiving data with USART

input data ended with
Pleaze input data ended with e
Tou are sending:
Hella®?
Flease input data ended with
Pleaze input data ended with
Flease input data ended with
Please input data ended with

Fleaze input data ended with

Tou are sending:

My name iz Liu Zhijiao.
input data ended with
Please input data ended with

Fleaze input data ended with

Figure 19: The output of sending and receiving with USART

3.3 Image Capture

3.3.1 Get one frame image
After define relevant pins and set up timers and external interrupts, the process that OV7670 get one

frame image is as follows:
OV7670 stores image data:

a) OV7670 waits for the sync signal

22

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision
b) Reset the writing pointer of FIFO

c) Enable FIFO

d) Wait for the second sync signal

e) Write data

f) Disenable the FIFO

Read image data form OV7670:

a) Reset the reading pointer of FIFO

b) Give FIFO_RCLK(FIFO reading clock)

c) Read the high bit of the first pixel

d) Give FIFO_RCLK

e) Read the low bit of the first pixel

f) Give FIFO_RCLK

g) Repeat previous steps for getting the bits of all pixels
h) Finish the whole image reading process

The following Figure 20 shows the sequence chart of OV7670 to get image data. HREF, abbreviate
for horizontal reference, indicates the process of sending a specific horizontal line of pixels. It is
also named as the horizontal synchronization signal. VSYNC is another synchronization signal,
which tells the state that whether the camera is sending image data. These two help the receiver,

here is the core board, to keep in phase with the camera.

23

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

- 510 X1, -
VSYNC .
] 480X 1, _ .|
3XY e e et _=T881, 10 1,
e = 1341,
HREF |_ |_| .
80 t ey - 5 191
___________________ EE—:.- |-|— —|-| -— tl’ — | |— " .

U

Row 0 Row 1 Row 2 Row 479

Figure 20: Sequence chart of OV7670

Understanding the working principles of OV7670 is not enough. The camera can only be chosen as
sending image data in RGB565 mode, while the computer needs RGB888 mode to show the image

that people can see.

RGB565 mode means that 5 bits store R parameter, 6 bits store G parameter, and another 5 bits
store B parameter. This mode only uses 16 bits to store one pixel, which will save more pixels than
the RGB888 mode when they have same memory. 16 bits can compose 65,536 kinds of colors.

Green component gets an extra bit, which will have 32 more levels of intensity than other two

components.
5 6 5
Red Green Blue
151413121110 9 8 7 B 5 4 3 2 1 0
8 8 8
Red Green Blue
1514 13 12 11 109 8 7.6 5 4 3 2 1. 0

Figure 21: RGB565 and RGBS888

To change RGB565 to RGBS888 (Figure 21) requires adding extra bits to the three colour

components. So, retain the most significant bits and then add Os to complement the least significant

24

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

bits, although that will decrease the precision.

One problem happens in the implementation of the conversion from RGB565 to RGB888. The
converted image has a totally wrong colour, but when it is in the mode of gray scale, the image is
correct. After analysis and several tests, that is caused by the RGB parameters not saving the right
pixel’s information. The variable type, ul6, 16 bit, replaces the u8, 8bit, to store the colour

parameters of the image and finally it works well.

After the core board receives the image data and turn those into RGB888 mode, it will wait for the
external interrupt that the computer gives to trigger the updating process and send one frame of the

image through the serial port.

3.3.2 Show the captured image
After the PC get the image data and save it as “received.txt”, the python program will read all the
RGB info and draw the whole picture as printing pixels one by one. However, it is not as simple as

it seems. Two problems impact a great deal to receive one frame image data successfully.

Number one, the sync problem causes the pixels of the received image disordered (shown in Figure
22). This sync problem of the captured image leads to a gibberish pixels. The camera is straight
running, but the command of capturing is not synchronized with the one frame image. This problem
is solved by setting up a startup command. Only after the board gets the command sent from the
serial, usually as sending “1” or other ASCII code, it starts to send the one frame data. That ensures
that every time of the capture, the board sends an intact ordered image data to the computer and

finally solves the sync problem.

-

Figure 22: Unsynchronized image (left) and synchronized image (right)

25

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Number two, because it should send at least 320*240%2 = 153600 bytes, the computer needs more
than 10 minutes for sending the image data at the default baud rate of 9600. The low speed of
sending problem causes that it takes almost fifteen minutes to send and receive one frame image
data, which is too slow to capture and update one frame on the computer. What’s more, this also
causes the fake crash of the computer. To solve this problem, the code of sending extra info to
distinguish the colour parameters is simplified at first, and then the baud rate is increased to 256000

by initialize the serial port at this speed. Now getting one frame image can be done in one minute.

After deal with these two problems and others, the showing part is much easier. Write a Python
program that simulate the UI of this showing process, and then read all RGB data as the three
colour components to be printed by PyGame pixel by pixel. Figure 23 and show the captured image

in the dorm and in the experiment environment.

Figure 23: Captured image (in dorm)

26

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

r 1
g‘ Image capture (=

Figure 24: Captured image (in experiment environment)

3.4 Image Processing

There is no need to teach the robot to distinguish what exactly the object is, but the robot should
make use of the limited image data to understand its environment and know what to do next.
Therefore, image processing part, especially distinguishing the colours, is the core mission of this

project.

The following two sections discuss how to accomplish edge detection and colour classification.

3.4.1 Edge detection

Edge detection is a fundamental tool in image processing, machine vision and computer vision.

From the information given in the background section, Laplace operator can help to detect the edges.
A continuous Laplace operator could be modified to fit discrete data, which will become more

implementable for the robot.

First-order differential:

S n]=f[n]=r[n—1] ©)

Second-order differential:

27

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Af[n]=f[n]—2f[n—l]+f[n—2] 7)
The R, G, and B parameters of every pixel in one frame works like a series of discrete points, which
can be plotted in Cartesian coordinates, where number of the pixels as X and the relevant R or G or

B parameter as Y. It can also be proved that use the equations (6) and (7) to do the Laplace operator

on discrete points (shown in Figure 25 and Figure 26).

Comparation between original first-order differential and computed by central differences

4[] T T T T T T
20r .
’ —h ‘
E -20~ firsttorder differential of R computed by centrgl differences .
a
E
s 40 J
o
B0+ J
80 | first-order differential of R .
_1[’][’] | | 1 | | |
0 50 100 150 200 250 300 350
Pixel

Figure 25: Proof of first-order differential on discrete points

28

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Comparation between original second-order differential and computed by scale space representation

4[] T T T T T T
20¢ .
: | _

- | i
a»
5
3 -20 second-order differential of R computed by scale gpace representation .
o
o

-40 .

B0 F 4

second-order differential of R
_Bu | | | | | |
0 50 100 150 200 250 300 350
Fixel

Figure 26: Proof of second-order differential on discrete points

Besides that, with observation and testing, two thresholds are set, +/-16 for first-order differential
and -15 for second-order differential to get a better detection. Each line of RGB components, e.g. R
component, does the first-order differential at first, and then filters those points between -16 and
+16 by setting them as 0. Do the same things to all three colour components. Compare R, G, B
components and choose the largest one (if the value is positive) or the smallest one (if the value is
negative) of every point in these components to compose a new line, maxRGB. This new line
represents the largest difference in every place where the colour changes the most, also known as
the edges. In addition, in order to find the edge points easily, here implements another threshold -15.

All the values above -15 will be filtered. Figure 27 shows the two thresholds’ effect.

29

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

+/-16 threshold and -15 threshald

150
100
first-order differential of R (R+100)
= 504
L4k}
5
E- second-order differential of R (Rp50
N | A
T
first-order differential of R with +/-16 threshold
. W Iy a8
second-order differential of R with —‘ﬁ threshold (R-50)
_-1[:”:] 1 1 1 1 1 1 1
] 50 100 150 200 250 300 350
Pixel

Figure 27: +/-16 threshold and -15 threshold

With the collaboration of Laplace operator and threshold, according to the original image, the edges

are well defined. The whole process of edge detection is as follows.

Step 1: Output the center line’s RGB parameters (Figure 28)

Figure 28: Centre line’s RGB parameters

Step 2: Show the lines of R, G, B values (Figure 29)

30

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

EUU T T T T T T

180

160

140

120

100

&0

60

| 1
0 50 100 150 200 250 300 350

Figure 29: The lines of R, G, B values

Step 3: Do the first order differential (Figure 30)

4[] T T T T T T

30+ .

20F -

20+ ! -
1

1st-order differential of R with +/-16 threshald
1st-order differential of G with +/-16 threshaold
1st-order differential of B with +/-16 threshaold
_4[] 1 1 1 1 1 1

] 50 100 150 200 250 300 350

Figure 30: First order differential with +/- 16 thresholds

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Step 4: Do the second order differential (Figure 31)

0

-50

-100

-150

-200

l'

o

2nd-order differential of mixed RGEB with -15 threshold

-250

-300
0

I

50

|
100

1
150

|
200

|
250

|
300 350

Figure 31: Second order differential with -15 threshold

The process simulation in MATLAB shows this algorithm can work for edge detection and that also

can serve for the following process, colour classification. While, based on the requirements, the

robot needs to do the edge detection when it runs for object-seeking. So, this algorithm needs to be

implemented in C for downloading to the robot. That is similar with the code in MATLAB and it is

relevantly easy to implement on the core board.

3.4.2 Colour classification

As the method mentioned before, here uses Bayesian approach to do the colour classification.

There are five steps of this approach, which are:

1. Getimage RGB data

2. Define the main color of each pixel

3. Train and get the prior probability and posterior probability

a) Count how many red pixels there and divide

that by the total pixels to get the prior

32

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision
probability, P(Red)

b) Count how many certain R(e.g. R=170) appear in the red block to get the posterior
probability, P(R[Red) (e.g. P(170|Red))

c) Get P(G|Red), P(B|Red) and the probalility of R, G, B given other colors in the same way
4. Based on given x(1, g, b) to calculate P(Red[x), P(Green|x), P(White[x), P(Black|x)
5. Choose the largest probability to define the x(r, g, b)’s color

The flow chart in Figure 32 gives a more intuitional process of this approach.

Bayesian approach

1. Get RGB data —= 2. Define the color ——3 3. Training
Get the matrix of possibliities

— Red

36,140,112 —= Green I

184,172.152| —~wnte |P(RIR€d)|P(G|Red)P(B|Red)
Al Black R: 0~255 |G: 0~255|B: 0~255

5. Compare and define (e« 4. Calculate the possibilitieg <—

Use x{r.g,b
P{Red|x) x(r.g.b)
P{Green|x) MAX? [— P(Red | x) = P(r | Red)-P(g | Rec_l) -_P(b | Red)-P(Red)
P(White]x) S P(x)
P(Black|x) O Calculate

P{Red|x), P(Green|x), P{White|x), P(Black|x)
Figure 32: The flow chart of Bayesian approach

Here uses the process of getting the possibility of Red given x as an example.

P(Red | x):P(II){(e)c(l,)x):P(x | R;c(i)){-)P(Red)
- P(r | Red).P(g | Red)-P(b | Red)'P(Red)

) P(x)

To define the main color of one pixel, it needs to compare the possibilities of that pixel is red, is

@®)

33

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

green, is white, and is black. Find the largest possibility, and that colour will be the main colour of
this pixel. As the equation (8) presents, the possibility of that the pixel, x, is red is determined by
P(rRed), P(g|Red), P(b|Red), and P(Red). P(r|Red) is the possibility of specific r given Red, which
can be understood as how much does the specific r component contribute to define a pixel as red.
P(g|Red) and P(bJRed) have similar meanings. P(Red) is the possibility that the red pixels’ volume
divided by the total volume in the whole training data set, also known as how many Reds are there

in the whole set.
Here uses the RGB parameters of one center line, 320*3 integer values, to show the training process.

Suppose that the training data set has only 320 pixels, and all RGB parameters are presented in
Figure 33.

W 9% 85 &5 ¥ 104 104 56 95 ¥ 104 104 %6 98 98 98 56 96 96 104 104 104 104 104 104 104 104 112 112 112 E 1z 12

100 108 106 104 104 108 112 106 112 108 112 112 116 112 112 112 112 1068 112 116 106 112 112 112 112 116 116 116 116 116 1200 120 120

B0 B8 ©0 B0 60 ©8 B8 B0 B0 S0 B0 B0 B8 B85 S0 B0 B0 B0 98 BB 83 66 B0 S0 B ES 66 G 8@ B 96 65 &6

112 112 112 112 112 112 120 120 120 120 120 128 136 46 green plxels
120 124 124 120 120 120 124 126 128 124 128 128 140

56 & &5 55 & & 95 06 95 96 96 104 112

120 185 1B& 1685 165 188 (86 1B& 163 178 1TE IT6 16& 165 178 ITE L7 1TE 178 ITe ITE 1T ITE 178 ITE ITVE IV ITE 184 184 154 184 14

152 156 160 160 164 184 1RO 1B0 160 164 168 1AG 168 163 188 1TE 166 166 168 168 1AG 168 163 188 1T2 172 168 168 1AA 16 172 1TZ 188

138 144 144 144 (44 144 (44 144 144 (44 152 ISZ 144 Q144 152 152 152 144 144 144 ISE 152 144 144 144 144 152 IS2 152 IS ISE 152 192 60 Whila = IS
184 184 184 184 184 1T@ 178 1B4 184 134 184 176 184 172 176 178 1786 1T6 178 176 178 178 1T8 184 1T 188 152 pme
188 172 176 172 172 188 18 172 172 168 168 172 172 172 1786 172 172 172 172 188 172 172 ITZ 172 160 164 152

152 152 152 152 152 152 144 152 152 j52 152 152 152 152 152 152 152 152 52 152 152 152 152 52 1S2 144 125

136 136 136 156 126 126 128 125 1253 128 128 128 125 125 128 128 120 128 120 120 120 120 120 112 112 112

140 136 136 136 130 138 (96 132 12 1% 132 132 1% 1% 132 132 132 132 132 126 198 126 125 194 124 1P 28 green pixels
104

33 black pixels

127 red pixels

28 black plxels

Figure 33: One frame pixels

Firstly, P(Red) equals the number of red pixels in the training data set divided by the total number.
Here is that 127/320 = 0.396875.

Then do the counting process. If there are n pixels in the section 121-140, n is divided by the total
number of red pixels (127) to get P(R|Red).

Repeat the previous steps to get the other probabilities. All of them in different sections are shown

in Figure 34.

34

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

E P(R|Red) o P(G|Red) E P(E|Red) FiRed)
1 0-20) 0 0-20 0 0-20 0 0. 30675
2 21-40 0 21-40 0 21-40 0
2 41-R0 0 41-R0 0 41-60 0
4 f1-80 0 F1-80 0.00TET4016 G1-80 0. 03937
5 81-100 0 81-100 0.157480315 £1-100 0. 313386
& 101-120 0 101-120 0. 834A46RFS 101-120 0. 047244
7 121-140 0, 047244004 121-140 0 121-140 0
g8 141-160 0, 802149605 141-1F0 0 141-160 0
G 161-180 0,149F06295 161-180 0 161-180 0
10 181-200 0 181-200 0 181-200 0
11 201-255 0 201-255 0 201-255 0
R F(R|Green) G F(G|Green) B F(E|Green) F(Green)
1 0-20 0 0-20 0 0-20 0 0. 225
2 21-40 0 21-40 0 21-40 0
2 41-R0 0 41-R0 0 41-60 0
4 F1-80 0 £1-80 0 B1-B0 0. 208333333
104 108 B8 5 B1-100 0.208333333 B81-100 0.0138B8BE0 21-100 0. 597222222
104 112 88 6 101-120 0. 527777778 101-120 0. 513888889 101-120 0.1944ddddd
96 108 B0 7 121-140 0. 2A3EEEEET 121-140 0.472222222 121-140 0
Oh 112 BO 2 141-160 0 141-160 0 141-160 0
96 103 8O g 161-180 0 161-180 0 161-180 0
104 112 80 10 181-200 0 181-200 0 181-200 0
104 112 80 11 201-255 0 201-255 0 201-255 0
160 152 136 E P(R|W¥hite) e F{G|W¥hite) E F(E|Vhite) P{¥hite)
168 156 144 1 0-20 0 0-20 0 0-20 0 0. 1875
168 1A0 144 2 21-40 0 21-40 0 21-40 0
16E 1A0 144 3 41-R0 0 41-60 0 41-F0 0
16E 1A4 144 4 F1-80 0 F1-B0 0 F1-B0 0
168 1A4 1dd 5 81-100 0 81-100 0 81-100 0
1RE 160 144 g 101-120 0 101-120 0 101-120 0
168 1A0 144 7 121-140 0 121-140 0 121-140 0. 033333333
16E 1A0 144 8 141-160 0. 033333333 141-160 0. 133333333 141-160 0. 9666EREAT
176 164 144 9 161-180 0.7 161-180 0. BFRRREERT 1A1-180 0
176 1AE 152 10 181-200 0. 2RFREEEET 181-200 0 181-200 0
176 168 152 11 201-255 0 201-255 0 201-255 0
E P(R|Elack) G Fi{G|Black) B F(B|Black) P(Black)
1 0-20 0 020 0 0-20 0 0. 190625
2 21-40 0. 4262206508 21-40 0, 770491803 21-40 0. 852459016
2 41-F0 0. 426229508 41-60 0. 770431803 41-60 0.552459016
4 F1-80 0. 4262209508 B1-80 0.196721311 £1-80 0.114754098
5 81-100 0.032786885 B1-100 0. 016393443 81-100 0
6 101-120 0. 0BEET3TT 101-120 0. 015333443 101-120 0
i 121-140 0. 016393443 121-140 0 121-140 0
2 141-160 0 141-160 0 141-1F0 0
5 161-180 0 161-180 0 161-180 0
10 181-200 0 181-200 0 181-200 0
11 201-255 0 201-255 0 201-255 0

Figure 34: Matrix of probabilities

As the figure shows, the result of one center line training is inaccurate. The probabilities are zero in
some sections, because of the lacking of the training data set. In the real training process, the data
set contains 9933 pixels and the result of training is better, the distributions of probabilities are

shown below. The detailed matrixes of probabilities are in appendix.

35

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

0.35

— P(r|Red)
P(gIRed)
—— P(b|Red)

0.3

0.25

0.2

0.15

0.1

0.05

Figure 35: P(r|Red), P(g|Red), P(b|Red)

From Figure 35, it can conclude that compared with R component, G and B components contribute

less to compose red colour. R component reaches the highest point in the section 9, also known as

160-180 in training.

36

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

— PirlGreen)

— P{blGreen)

PiglGreen)

3 4 5 B 7 8
Figure 36: P(r|Green), P(g|Green), P(b|Green)

10 "

From Figure 36, it can conclude that the largest probability from B component still in lower setion.

G component contributes more to compose green colour and it reaches the highest point in the

section 7, also known as 121-140 in training.

0.7

0.6

051

0.4}

0.3F

0.2

0.1

——— P{r|White)

— P(b[White) |

P{glWhite)

Figure 37: P(r|White), P(g[White), P(b|White)

37

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

From Figure 37, it can conclude that to compose white colour, it requires all the three components
should be high enough. In the ideal condition, the figure should shows that all the three components
are constantly increasing. However, this figure shows that in the real world, the defined white
colour is not that “white”, because in the computer definition, white should be 255,255,255. This

phenomenon also indicates that from the captured image, we cannot get the real white colour.

U.? T T T T T T T T T
— P{rBlack)
06l P(glBlack) |
’ — P(b|Black)
0.5 .

0.4

0.3

0.2

0.1

— ! | 1

B 7 B g 10 1
Figure 38: P(r|Black), P(g|Black), P(b|Black)

For the black colour, it has similar problem with the white one. From Figure 38 it can conclude that
to compose black colour, it requires all the three components should be low enough. Here the
largest probability happens in section 3, which is 41-60. In the ideal condition, black should be
0,0,0. This similar phenomenon tells that from the captured image, we also cannot get the real black

colour defined in computer.

After plotting the distribution of these probabilities, those figures tell that different volume of RGB
components compose different colours, which is close to the realistic. For example, High volume of
R,G,B will contribute to white colour, while low volume of R,G,B will lead to black colour. There
still remains problem between the training and the realistic, as when B component above 200, the
possibility of b given White is zero, which should be very small but not zero. The answer to that

question should be explained as we cannot get absolute white colour in real world when gather the

38

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision
image data, and the training data set may still be not enough.

In a word, the possibilities of r given Red, g given Red, b given Red and the possibility of Red all

come from training, and that depends a great deal on the experiment environment.

By implementing the edge detection and colour classification in the robot, it can find the target with

required colour.

3.5 Ultrasonic Distance Measurement

The core function of this ultrasonic module is to detect the distance between it and the obstacles.
That can not only return the distance, but also serve for the collision avoidance. The following two
sections explain the function of distance calculation and how to implement that function on the

robot. The working principle of distance detection is shown in Figure 39.

Trig

Obstacle Echo

Figure 39: Working principle of distance detection

3.5.1 Distance calculation

The function of calculating the distance between the ultrasonic module and the obstacle is

d ==y . T;Iuration

. ©)
:340m/s><5 =170T

As the working principle mentioned in the background part, the ultrasonic module returns the time
duration between sending signal and retrieving signal, as Tduration. Because the signal transmits

with the speed of sound, the total distance d can be calculated with the equation (9).

39

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

3.5.2 Implement the measurement
To implement the measurement on the robot, detection and calculation only one time is far from
enough. Here detects five times and calculates the average distance as the detected distance in the

robot, more detailed results shown in Figure 40.

. 59,3470

cel T4.3110

Figure 40: Distance detection

3.6 Motion
To realize that the robot can move independently, the motion system needs to provide power to the
core board as well. The following sections indicate the process of making the robot move and turn

with specific distance and angle and the process of speed detection.

3.6.1 Detect the speed

Cooperated with ultrasonic module, we can test out the real speed of the robot and use that to define
more complicated algorithms for object-searching and return path calculating. The principle is quite
easy, as use the difference between two distance detections and the running time of the robot to get
the speed (Equation 10).

yod_ 4 (10)

To get the relevant accurate speed of the robot in the full power condition, the code is modified to
meet the testing requirements. According to the modified code, when the robot gets the trig signal, it

will run 500ms each time with distance detection. After five times testing, it can return the average

40

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

speed of previous running. The process of testing is shown in Figure 41. The average speed is

nearly 35cm/s.

Figure 41: Calculate the speed

3.6.2 Move and turn

There are four INs on L298N driver board. Each two of them control one wheel. For example, IN1
and IN2 control the right wheel. When IN1 is high level and IN2 is low level, the motor of the right
wheel will run forward. Otherwise, the right wheel will run backward. The code of controlling
movement is shown in Figure 42. Here also uses a for loop to switch very fast between high level

and low level to provide approximate constant speed rather than giving high level with a long

duration.

wvold Motor forward(fleoat d){
ud i:

ffprintf ("Forward! ! 'h\n") ;
Motor starti();

for (i=0;i<(d/35%*200) ;i++){
RIGHT TNI=LEFT IN3=1:

delay m=(5);

REIGHT INI=LEFT IN3=0;

delay ms(100);

Figure 42: Function of moving forward

After get the speed of the robot, to make the robot turn with a specific angle is the next mission.
According to the speed 35cm/s, use the following derivation to finish the code that can control the

robot turning. The distance between two wheels is 16cm, so the perimeter is 16*3.1415 = 50.3cm.

41

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

So the robot will turn 35/50.3*360 = 250.5 degree per second. Implement that on the robot and the

code is shown in Figure 43.

void Motor right (float a){

ug i;

printf ("Turn right %f degrees\n",a):
Motor start();
for (i=0;i<(a/250.5%200) ;i++) 4

RIGHT INZ=LEFT IN3=1;
delay ms(3);
RIGHT INZ=LEFT IN3=0;

delay ms(100);

Figure 43: Function of turning right

3.7 Algorithm

The whole process includes two main algorithms, object-seeking and return path calculation, which
covers most of the functions that the robot needs to achieve. The flow chart of the whole process is
shown in Figure 44, and the following sections explain the implementation of these algorithms in

detail.

42

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Object-seeking Return
Record start position
L Check start position
| Search around :

Find black? |E
*Yas

Chack Distance: d
Forward 50*n cm *
Trun left 90

Backward10cm |

: Retum path
d<10cma2|" 28 F

+No :

No Find red? [«—-

yYes :

Focus red » Get target

Figure 44: Object-seeking and return path calculation

3.7.1 Object-seeking algorithm

Object-seeking algorithm is the core of the whole process. It contains a number of loops and
judgements. As the robot has been started, it will search around at first. The robot is sensitive to the
black colour and red colour, because black means obstacle and red means target. Firstly, it will
check whether there is a black obstacle in front of it. If yes, it will run backward to avoid collision.
If no, the robot will check whether the red target appears in the view. If it cannot find the red area in
the view, it will move forward a certain distance (based on the times, n, that the robot tried by not
found the red target) and turn 90 degrees to search around the new place. While, if the red target has
already existed in the view, it will call the focus red function to reach and collect the target. At the
mean time of object-seeking, the robot will remember each step that it moves to find and collect the

target, which will help it return to the starting position.

3.7.2 Return path calculation
Compared with the object-seeking algorithm, the return path calculation is much easier. A 2D array

is used to record the steps that the robot moved when it searched the target. As a result, the robot

43

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

can reverse those steps to bring the target back to the start point. This algorithm seems a little bit
ideal, so a double check of the position to ensure that the robot can return to the starting position

accurately is necessary.

Another function, named check start position, is implemented to do that job. Figure 45 shows the

relationship between the distance and the pixels of background.

Distance
60
50
40
30 & Distance
—— Pixels
20
10
y =0.0011x2 - 0.5468x + 73.79
R%=0.9976
0 T T T 1
0 50 100 150 200

Figure 45: Relationship between the distance and the pixels

After collecting the target and reversing the movement, based on the 360-degree record of the start
position, the robot will analyze the number of different kinds of pixels to locate its position and
double check whether it is at the start point. If not, the robot will do the small scale adjustment to
increase the position matching. However, that can only work in a small scale. If the difference

between the start record and the check record is huge, the robot cannot do the adjustment.

44

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Chapter 4: Results and Discussion
According to the design and implementation, all the modules can work well when the robot runs,
and the robot can meet the basic requirements of object-seeking mentioned in the specification. All

the work can be roughly concluded in parts.

Firstly, the robot can get one frame image from the camera and the available detect degree is nearly

40 degrees.

Secondly, more than 30 times of training is implemented in the edge detection and colour
classification phase, which will ensure that the robot can define the colour accurately in the

experiment environment.

Thirdly, after enable the ultrasonic module and motor module, the robot can run with a speed of
30cm/s and detect the distance between it and the target, which is also an important function used in

the collision avoidance.

Lastly, the robot can find the target, move towards it, collect it, and bring it back to the starting

position.

Although I tried to ensure the accuracy of the movement and the turning, the robot still suffers from
that, which makes it quite hard to return to the exact starting position, even I’ve used the double
check. Apart from that, the training will help the robot to define the colour easily, while it also
makes the robot depend so much on the training environment. If in different environment, the
brightness, the friction and other parameters may cause a huge difference of the result that this

report shows.

45

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Chapter 5: Conclusion and Further Work
After the study and implement in the past 7 month, the robot now can meet the fundamental
requirements specified in the specification. The basic task of this project is that the robot needs to

find the target with computer vision and bring that target back to the starting position.
To fulfil the task, the implementation is divided into five parts.

Number one is the design of the whole system and the construction of the environment. The
interactions between different ends are defined and software environment and the real world

experiment environment are constructed.

Number two is image collection and image processing, which is the core of this project. The
STM32 core board sends sync signals to the OV7670 camera to trigger it for image data collection,
and one frame image can be shown in the computer with a program written in Python. Besides the
collection part, combining the learning of the computer vision, the core board also accomplishes the
edge detection with Laplace operator and use the probabilities from colour classification with
Bayesian approach to achieve finding the target colour red. Here indicates that the robot can see the

world and find the target.

Number three is the implementation of the ultrasonic module. This module is not only used for

distance detection, but also used for speed detection and collision avoidance.

Number four is the motion system. Using L298N driver board to drive the two DC motors and
wheels is accomplished at first. Then more tests of the speed and turning angle are implemented to
help the robot move with specific distance and turning angle. That makes it more convenient to

control the robot.

Number five is the algorithms that enable the robot to seek object, avoid obstacles, and bring the
target back to the start position. Two main algorithms, object-seeking and return path calculation are
presented in this report. Based on the results of the image processing, the robot will adjust its
moving direction to move towards to the red target. After the robot find the target object and collect
it, the robot will calculate the return path and try to bring the collected object back to the starting
point. What’s more, the cooperation of ultrasonic module and motor module ensures the robot can

avoid black obstacles.

Though most of the project has accomplished, there are some aspects needing improvement. The

46

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

robot cannot turn a very accurate degree, thus, that cannot guarantee a perfect 360-degree round
search. To solve that problem in the future, steering engine and stepping motors may be used to get
a more accurate result. Besides that, now the robot depends too much on the experiment
environment to accomplish the colour classification, because there is no enough memory of the core
board to store the training data and the robot cannot train by itself. In the future work, the approach
of training needs modification to achieve that it can be done without store all training data, and the

robot can train individually without the help of the computer.

47

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

References

[1] PANG Yunong, Undergraduate Project Report: Autonomous space tidying robot, 2012.5
[2] http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1031/LN1565/PF164495, 2013.4
[3] The Definitive Guide to the ARM Cortex-M3, Joseph Yiu, ISBN: 978-0-7506-8534-4

[4] http://brawikov.narod.ru/StdPerLibSTM32F10x/, 2013.4

[5] A Brain-Friendly Guide Head First Python, 1st Ed., 2010.11

[6] http://www.pygame.org/tags/pygame, 2012.11

[7] Machine Vision: Theory Algorithms Practicalities, E.R. Davies, 3rd Ed.

[8] http://en.wikipedia.org/wiki/Edge detection, 2013.3

[9] http://en.wikipedia.org/wiki/Bayes%27 theorem, 2013.3

48

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Acknowledgement
I would like to express my special thanks of gratitude to my supervisor Dr. Christopher Harte who
gave me the golden opportunity to do this wonderful project and provided me a great deal helpful

advises to accomplish this project.

I would also like to thank PANG Yunong, who did a similar projest last year and shared his

experience with me to help me improve the performance of my project

Thanks all my group mates, ZHANG Xuefeng, WANG Wenxin, HUO Yujia, ZHANG Mincong, LI
Xuan, SONG Xiaorui, YANG Chunyu, ZHOU Yanchao and NI Jinsi. We helped and supported each

other for the past year, especially in the final project aspect.

49

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Appendix

1. The matrixes of the probabilities trained in Bayesian approach

2. Specification

The matrixes of the probabilities trained in Bayesian approach

P xr 0-20 21-40 41-60 61-80 81-100 101-120 121-140 141-160 161-180 181-200 200+
E 0 0 0. 022528 0.048316 0.032545 0.10102 0. 098097 0.25293 0.27782 0.13507 0.03147%
G 0 0,009017 0.076301 0.14202 0.16801 0.32211 0.253073 0, 027086 0. 0040Z6 0 0
B 0 0.033073 0. 062392 0. 23829 0.3298 0. 25586 0.033637 0,004758 0 0 0
Fxg 0-20 21-40 41-60 61-80 81-100 101-120 121-140 141-180 161-180 181-200 200+

X

E 0 0.001384 0. 026288 0.030863 0,001803 0.34325 0.3604 0,13287 0.015571 0.012111 Q. 000346
G 0 0 0,029066 0.05917 0,0238Y3 0.187594 0.4391 0.Z21972 0, 0399386 0. 004544 0, 000892
B 0 0,021107 0.03391 0.11938 0.36935 0.38304 0.046713 0, 024221 0, 00173 0. 000346 0

P_x_w 0-20 21-40 ¢1-a0 61-20 81-100 101-120 1Z1-140 141-160 161-180 181-200 200+
R 0 0 0 0,013688 0.011206 0, 030928 0.0858%9 0.20484 0.28133 0.33792 0. 042532
G 0 0 0 0. 021067 0, 009861 0.037203 0.074854 0.27745 0.37B31 0.18108 0.02017
E 0 0 0. 00782 0.02539T7 0.034065 0.09861 0.18674 0.50112 0.14612 0.0197Z2 0

F x b 0=20 21-40 41-a0 B1-80 81-100 101-120 121-140 141-160 161-180 181-200 200+
R 0,000862 0.19375 0.43413 0.33413 0.0125 0,015385 0, 005289 0, 002835 0. 000962 0 0
G 0.001923 0.17115 0.61058 0.1851 0.014304 0. 006731 0.00625 0.002885 0.000451 0 0
E 0.003565 0.42981 0.512%8 0,038%4Z2 0. 007212 0.00876% 0. 001923 0 0 0 0

50

b =M B OK
ARV (B30 £FH

Project Specification Form

2B& School International Schod® M\ Programme Telecommunications |[BEZEClass 2009215109

W4 Name LIU Zhijiao %5 BUPT student no 09212987 %5 QM student no |090466298

?Eﬁ%iﬁﬁﬁﬂiéz HARTE Christopher |BRFR Academic Title |[Teaching Fellow

Supervisor

®’il (B30 BH

Project Title Low resource autonomous object—seeking robot using computer vision

B H 43K Scope Implementation |Hardware and SoftwarelHardware

TEEZ K HIMain tasks and target: By

Task 1: Become familiar with the microcontroller and camera modules 2012. 12. 31

Task 2: Design Al algorithm for searching the unknown space 2013.2. 15
. . . . 2013.3.15

Task 3: Develop and test simple video processing software to enable robot to see its world

Task 4: Demonstrate the robot seeking an object 2013.4.15

Measurable outcomes

1) Working microcontroller/camera system that can drive a robot chassis
2) Demonstrable image processing code

3) Demonstration of robot seeking the object in its world

FE RN ZEProject description:

The task in this project is to develop a robot that can see its world using a small camera module. The robot should
be able to investigate its world using its primitive vision system and attempt to find a known specific object (for
example the only red object in the test space). The robot should then bring that object back to its starting position
A project from last year developed the camera module interface for a microcontroller so this information and library
code will be provided to accelerate development of the robot and the AI component of the work.

Project outline

This project requires that the robot can search target object with the help of a camera, collect it and bring it back
to starting point. The main functions to fulfill the tasks are specified below in hardware, software, and driver
aspects. The hardware system contains the main functions of control, sensing, motion and UI. Control section is the
core of this project. Due to the high efficiency of ARM processor, the brain of the robot will be a STM32
microcontroller. Sensing section meets the requirements of detection. There will be three modules in this section,
which are camera module using OV7670 for pattern recognition, infrared module ultrasonic module for calculating
distance and avoiding obstacles. Motion section includes wheels, couplers, motors, etc. to enable that the robot can
move and veer. UI section mainly helps the users to interact with the robot. Because this robot will work
automatically, the interaction only includes the launching. The software system mainly does the algorithm and logical
work. Firstly, it can map a specific area and complete video processing with pattern recognition algorithms. Secondly
it can calculate the path to the target object without hitting obstacles. Thirdly, it can record the moving distance
and turning angle to make sure that it will move back to the starting point. Lastly, it can change mode between push
and pull to meet different conditions. To implement the software, C and Python programming are needed.A driver is the
connection between the hardware and software to ensure all the logical algorithms can be real executed on the
hardware. Three kinds of drivers play a momentous role to this project. Camera driver contributes to reading the video
data from the camera. Sensor driver generates signal to the microcontroller when it finds unusual situation. Motion
driver is responsible for all the movement functions, such as moving forward, backward, turning left, right, etc

[1] PANG Yunong, Undergraduate Project Report: Autonomous space tidying robot, 2012.5

[2] David Cook, Robot Building for Beginners (2nd Ed.), TECHNOLOGY IN ACTION™, ISBN-13 (electronic): 978-1-4302-2749-6
[3] J. Palacin, A. Sanuy, X. Clua, Autonomous mobile mini-robot with embedded CMOS vision system, 5-8 Nov. 2002

Fill in the sub—tasks and select the cells to show the extent of each task

Nov

Dec

Jan

Feb

Task 1: Become familiar with the
microcontroller and camera modules

Background reading: determine using which
microcontroller, camera, and other modules

Learn the programming of microcontroller and get
image data from the camera

Learn video processing and accomplish pattern
recognition.

Understand how the microcontroller cooperates
with other modules and design a prototype.

Task 2: Design AI algorithm for searching the
unknown space

Map the valid searching area.

Final exam preparation

Realize multi-step searching

Calculate the path and implement the moving forth
and back algorithm.

Task 3: Develop and test simple video
processing software to enable robot to see its
world

Design and implement drivers.

Simulate the robot’s vision by computer

Revise the software.

Task 4: Demonstrate the robot seeking an object

Control the wheels to reach its destination and
collect target object.

Change the mode between push and pull.

Come back to the starting position

Write reports and prepare for viva

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Risk Assessment
Table 1: Risk Assessment Table
Description of Risk Ultrasonic is burned | Motors cannot work Robot crashed
Description of Impact | Can’t detect distance | Can’t move Some parts are broken
Likelihood Rating High Medium Low
Impact Rating Low Medium High
Preventative Actions | Prevent the ultrasonic | Make sure every | Changing step by step,
directly connecting to | process is in correct | not to update too

the VCC

order

many things one time

51

Project ID QCAH3 Low resource autonomous object-seeking robot using computer vision

Environmental Impact Assessment

1.

Cost of manufacture

I bought almost every component from Taobao, and it cost about 300 RMB for the whole robot.
Waste disposal and recycling

The batteries of this robot are rechargeable, which can be recycled and used later.

Energy use in service

My computer and the robot are the main two energy consuming devices in this project.

Savings in energy

When programming, I shut down the robot power to save energy.

52

	Title_page
	[Draft]QCAH3-Final Report-jp092987-Zhijiao LIU

